YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental Study of Gravity-Inertial Waves and Wind-Induced Kelvin-Type Upwellings in a Rotating System

    Source: Journal of Physical Oceanography:;1981:;Volume( 011 ):;issue: 008::page 1100
    Author:
    Renouard, Dominique P.
    DOI: 10.1175/1520-0485(1981)011<1100:AESOGI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Large-amplitude gravity-inertial waves have been observed in stratified seas. These waves, of a shorter period than the Coriolis period, are linked to a gust of wind. Numerous theories have been proposed to explain these waves but, up to now, they have not been verified experimentally in a rotating system. On the large rotating platform in Grenoble, the author has built a large tank (8 m ? 2 m ? 0.6 m) equipped with a wind tunnel. By strictly controlling the main parameters (speed of rotation of the platform, and thus Coriolis period, intensity and duration of the impulsional wind, height and density of the two fluid layers) he has studied and analyzed the variations in height of the interface between the two fluids. Here, the author's work is placed in the general context of various studies of this phenomenon, and some analytical developments are presented within the general hypothesis first used by Crépon (1969a,b). The experimental facilities are described briefly and a preliminary explanation is given of the phenomena occurring in the tank when the wind suddenly blows. The variations in height of the interface are analyzed and the existence of a gravity-inertial wave linked to the impulsional character of the wind is proved. The period of this wave, which is shorter than the Coriolis period, depends on the dimensions of the tank and on the phase speed of the baroclinic mode, and may be predicted by the simple model designed. The wave is progressive, first appearing at the sides of the channel. At the beginning of the motion, it can be shown that the wave amplitude is independent of the observation point, and depends on the wind intensity and duration. Wave amplitude is found to be maximum when wind duration is equal to half the period predicted by the tank model. Looking at the entire interface, there are two opposite corners where Kelvin-type interface variations occur, propagating along the longitudinal sides of the tank and giving rise to a Poincaré-Kelvin amphidromy. The existence of such particular points has been predicted by recent analytical developments of Crépon and Richez (1981).
    • Download: (1.029Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental Study of Gravity-Inertial Waves and Wind-Induced Kelvin-Type Upwellings in a Rotating System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4163136
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorRenouard, Dominique P.
    date accessioned2017-06-09T14:45:56Z
    date available2017-06-09T14:45:56Z
    date copyright1981/08/01
    date issued1981
    identifier issn0022-3670
    identifier otherams-26261.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4163136
    description abstractLarge-amplitude gravity-inertial waves have been observed in stratified seas. These waves, of a shorter period than the Coriolis period, are linked to a gust of wind. Numerous theories have been proposed to explain these waves but, up to now, they have not been verified experimentally in a rotating system. On the large rotating platform in Grenoble, the author has built a large tank (8 m ? 2 m ? 0.6 m) equipped with a wind tunnel. By strictly controlling the main parameters (speed of rotation of the platform, and thus Coriolis period, intensity and duration of the impulsional wind, height and density of the two fluid layers) he has studied and analyzed the variations in height of the interface between the two fluids. Here, the author's work is placed in the general context of various studies of this phenomenon, and some analytical developments are presented within the general hypothesis first used by Crépon (1969a,b). The experimental facilities are described briefly and a preliminary explanation is given of the phenomena occurring in the tank when the wind suddenly blows. The variations in height of the interface are analyzed and the existence of a gravity-inertial wave linked to the impulsional character of the wind is proved. The period of this wave, which is shorter than the Coriolis period, depends on the dimensions of the tank and on the phase speed of the baroclinic mode, and may be predicted by the simple model designed. The wave is progressive, first appearing at the sides of the channel. At the beginning of the motion, it can be shown that the wave amplitude is independent of the observation point, and depends on the wind intensity and duration. Wave amplitude is found to be maximum when wind duration is equal to half the period predicted by the tank model. Looking at the entire interface, there are two opposite corners where Kelvin-type interface variations occur, propagating along the longitudinal sides of the tank and giving rise to a Poincaré-Kelvin amphidromy. The existence of such particular points has been predicted by recent analytical developments of Crépon and Richez (1981).
    publisherAmerican Meteorological Society
    titleAn Experimental Study of Gravity-Inertial Waves and Wind-Induced Kelvin-Type Upwellings in a Rotating System
    typeJournal Paper
    journal volume11
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1981)011<1100:AESOGI>2.0.CO;2
    journal fristpage1100
    journal lastpage1112
    treeJournal of Physical Oceanography:;1981:;Volume( 011 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian