YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regional Eddy Vorticity Transport and the Equilibrium Vorticity Budgets of a Numerical Model Ocean Circulation

    Source: Journal of Physical Oceanography:;1981:;Volume( 011 ):;issue: 002::page 190
    Author:
    Harrison, D. E.
    ,
    Holland, W. R.
    DOI: 10.1175/1520-0485(1981)011<0190:REVTAT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The dynamical balances of the mean flow of a numerical model ocean general circulation experiment are examined through evaluation of regional vorticity budgets. The instantaneous flow is strongly time dependent and the effect of eddy terms in the mean budgets is of primary interest. Budgets have been computed over volumes ranging in size from less than that of a typical model eddy up to an entire wind-driven gyre, using time series of 5 and 10 year durations. The statistical reliability of terms in the budgets varies significantly with the region size; over regions the size of an eddy or smaller the reliability is often poor, but over the selected larger regions it is satisfactory. The final analysis regions are selected by requiring that each be identified clearly with some part of the mean flow and that cancellation of the locally dominant terms within each region be minimized whenever possible. The primary mechanism for balancing the wind-stress curl vorticity input in each half basin is found to be horizontal transport of relative vorticity by the eddies across the zero wind-stress curl latitude that separates the distinct flow systems of the two half basins. However, net meridional eddy vorticity transport is generally unimportant away from the half-basin boundary latitude. Eddy horizontal transports over the analysis regions, away from the western part of the zero wind-stress curl latitude, also tend to be small. The transport flow budgets and upper layer budgets tend to be similar. The deep-layer flow is qualitatively different from these flows, a separate set of analysis regions is needed to study it, and the deep budgets are different in several respects. Away from the boundary currents and internal jets the volume integral analog of the classical geostrophic balance?vortex stretching balancing advection of planetary vorticity?holds very well. In particular, over the interior of each gyre, the net input of vorticity by the, wind balances the loss by advection of planetary vorticity to better than 10%. This result is quite different from the conclusion that would he drawn from examination of the vorticity balance at a point over much of the interior, where the divergence of the eddy relative vorticity flux is often large (but of limited statistical reliability). The eddy heat-flux divergence plays an important role in establishing the interfacial vertical velocity contribution to vortex stretching in some of the regions, and appears essential in forcing one of the deep flow currents. No simple summary of the bound current and jet region budgets can be offered, except that mean nonlinear transport often dominates eddy horizontal transport and that frictional effects can be quite small. These results are compared with classical wind-driven ocean circulation ideas and the strengths and limitations of this type of analysis for studying eddy-mean flow interaction are discussed.
    • Download: (1.292Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regional Eddy Vorticity Transport and the Equilibrium Vorticity Budgets of a Numerical Model Ocean Circulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4163058
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorHarrison, D. E.
    contributor authorHolland, W. R.
    date accessioned2017-06-09T14:45:46Z
    date available2017-06-09T14:45:46Z
    date copyright1981/02/01
    date issued1981
    identifier issn0022-3670
    identifier otherams-26191.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4163058
    description abstractThe dynamical balances of the mean flow of a numerical model ocean general circulation experiment are examined through evaluation of regional vorticity budgets. The instantaneous flow is strongly time dependent and the effect of eddy terms in the mean budgets is of primary interest. Budgets have been computed over volumes ranging in size from less than that of a typical model eddy up to an entire wind-driven gyre, using time series of 5 and 10 year durations. The statistical reliability of terms in the budgets varies significantly with the region size; over regions the size of an eddy or smaller the reliability is often poor, but over the selected larger regions it is satisfactory. The final analysis regions are selected by requiring that each be identified clearly with some part of the mean flow and that cancellation of the locally dominant terms within each region be minimized whenever possible. The primary mechanism for balancing the wind-stress curl vorticity input in each half basin is found to be horizontal transport of relative vorticity by the eddies across the zero wind-stress curl latitude that separates the distinct flow systems of the two half basins. However, net meridional eddy vorticity transport is generally unimportant away from the half-basin boundary latitude. Eddy horizontal transports over the analysis regions, away from the western part of the zero wind-stress curl latitude, also tend to be small. The transport flow budgets and upper layer budgets tend to be similar. The deep-layer flow is qualitatively different from these flows, a separate set of analysis regions is needed to study it, and the deep budgets are different in several respects. Away from the boundary currents and internal jets the volume integral analog of the classical geostrophic balance?vortex stretching balancing advection of planetary vorticity?holds very well. In particular, over the interior of each gyre, the net input of vorticity by the, wind balances the loss by advection of planetary vorticity to better than 10%. This result is quite different from the conclusion that would he drawn from examination of the vorticity balance at a point over much of the interior, where the divergence of the eddy relative vorticity flux is often large (but of limited statistical reliability). The eddy heat-flux divergence plays an important role in establishing the interfacial vertical velocity contribution to vortex stretching in some of the regions, and appears essential in forcing one of the deep flow currents. No simple summary of the bound current and jet region budgets can be offered, except that mean nonlinear transport often dominates eddy horizontal transport and that frictional effects can be quite small. These results are compared with classical wind-driven ocean circulation ideas and the strengths and limitations of this type of analysis for studying eddy-mean flow interaction are discussed.
    publisherAmerican Meteorological Society
    titleRegional Eddy Vorticity Transport and the Equilibrium Vorticity Budgets of a Numerical Model Ocean Circulation
    typeJournal Paper
    journal volume11
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1981)011<0190:REVTAT>2.0.CO;2
    journal fristpage190
    journal lastpage208
    treeJournal of Physical Oceanography:;1981:;Volume( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian