YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Landfall of Hurricane Hugo in the Carolinas: Surface Wind Distribution

    Source: Weather and Forecasting:;1991:;volume( 006 ):;issue: 003::page 379
    Author:
    Powell, Mark D.
    ,
    Dodge, Peter P.
    ,
    Black, Michael L.
    DOI: 10.1175/1520-0434(1991)006<0379:TLOHHI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Hurricane Hugo struck Charleston, South Carolina, on 22 September 1989 as the most intense hurricane to affect the United States since Camille in 1969. The northeastern eyewall, which contained the maximum winds measured by reconnaissance aircraft shortly before landfall, moved inland over a relatively unpopulated area and there were few fatalities. However, no observations were available to document the surface wind distribution in this part of the storm as it continued inland. To improve specification of surface winds in Hugo, empirically adjusted aircraft winds were combined with coastal, offshore, and inland surface observations and were input to the Ooyama objective analysis algorithm. The wind analysis at landfall was then compared with subsequent analyses at 3 and 6 h after landfall. Reconstruction of the surface wind field at landfall suggests that the maximum (?13 min mean) surface wind at the coast was 50 m s?1 in the Bulls Bay region, ?40 km northeast of Charleston. Surface roughness over land caused wind speeds to drop off rapidly just inland of the coast to only 50% of values measured by reconnaissance aircraft at the same location relative to the storm over water. Despite relatively rapid increases in the central sea-level pressure and decreases in the mean circulation as Hugo progressed inland, hurricane-force wind gusts extended Hugo's damage pattern well past Charlotte, North Carolina, ?330 km inland. Accurate determination of surface wind distribution in land-falling hurricanes is dependent upon the spatial density and quality of surface wind measurements and techniques to adjust reconnaissance flight-level winds to the surface. Improvements should allow forecasters to prepare more-accurate warnings and advisories and allow more-thorough documentation of poststorm effects. Empirical adjustments to reconnaissance aircraft measurements may replace surface data voids if the vertical profile of the horizontal wind is known. Expanded use of the airborne stepped-frequency microwave radiometer for remote sensing of ocean surface winds could fill data voids without relying upon empirical methods or models. A larger network of offshore, coastal, and inland surface platforms at standard (10-m) elevations with improved sampling strategies is envisioned for better resolution of hurricane wind fields. A rapid-response automatic station network, deployed at prearranged coastal locations by local universities with meteorology and/or wind engineering programs, could further supplement the fixed platform network and avoid the logistical problems posed by sending outside teams into threatened areas.
    • Download: (1.738Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Landfall of Hurricane Hugo in the Carolinas: Surface Wind Distribution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4162890
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorPowell, Mark D.
    contributor authorDodge, Peter P.
    contributor authorBlack, Michael L.
    date accessioned2017-06-09T14:45:23Z
    date available2017-06-09T14:45:23Z
    date copyright1991/09/01
    date issued1991
    identifier issn0882-8156
    identifier otherams-2604.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4162890
    description abstractHurricane Hugo struck Charleston, South Carolina, on 22 September 1989 as the most intense hurricane to affect the United States since Camille in 1969. The northeastern eyewall, which contained the maximum winds measured by reconnaissance aircraft shortly before landfall, moved inland over a relatively unpopulated area and there were few fatalities. However, no observations were available to document the surface wind distribution in this part of the storm as it continued inland. To improve specification of surface winds in Hugo, empirically adjusted aircraft winds were combined with coastal, offshore, and inland surface observations and were input to the Ooyama objective analysis algorithm. The wind analysis at landfall was then compared with subsequent analyses at 3 and 6 h after landfall. Reconstruction of the surface wind field at landfall suggests that the maximum (?13 min mean) surface wind at the coast was 50 m s?1 in the Bulls Bay region, ?40 km northeast of Charleston. Surface roughness over land caused wind speeds to drop off rapidly just inland of the coast to only 50% of values measured by reconnaissance aircraft at the same location relative to the storm over water. Despite relatively rapid increases in the central sea-level pressure and decreases in the mean circulation as Hugo progressed inland, hurricane-force wind gusts extended Hugo's damage pattern well past Charlotte, North Carolina, ?330 km inland. Accurate determination of surface wind distribution in land-falling hurricanes is dependent upon the spatial density and quality of surface wind measurements and techniques to adjust reconnaissance flight-level winds to the surface. Improvements should allow forecasters to prepare more-accurate warnings and advisories and allow more-thorough documentation of poststorm effects. Empirical adjustments to reconnaissance aircraft measurements may replace surface data voids if the vertical profile of the horizontal wind is known. Expanded use of the airborne stepped-frequency microwave radiometer for remote sensing of ocean surface winds could fill data voids without relying upon empirical methods or models. A larger network of offshore, coastal, and inland surface platforms at standard (10-m) elevations with improved sampling strategies is envisioned for better resolution of hurricane wind fields. A rapid-response automatic station network, deployed at prearranged coastal locations by local universities with meteorology and/or wind engineering programs, could further supplement the fixed platform network and avoid the logistical problems posed by sending outside teams into threatened areas.
    publisherAmerican Meteorological Society
    titleThe Landfall of Hurricane Hugo in the Carolinas: Surface Wind Distribution
    typeJournal Paper
    journal volume6
    journal issue3
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(1991)006<0379:TLOHHI>2.0.CO;2
    journal fristpage379
    journal lastpage399
    treeWeather and Forecasting:;1991:;volume( 006 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian