YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Satellite Observations of the Influence of Bottom Topography on the Seaward Deflection of the Gulf Stream off Charleston, South Carolina

    Source: Journal of Physical Oceanography:;1979:;Volume( 009 ):;issue: 003::page 483
    Author:
    Legeckis, Richard V.
    DOI: 10.1175/1520-0485(1979)009<0483:SOOTIO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: High-resolution thermal infrared data from the NOAA polar orbiting satellites are studied for the Gulf Stream between Florida and Cape Hatteras from the fall of 1974 to the spring of 1977. The sea surface temperature boundaries of the current are detectable in infrared images from fall to spring of each year. Seasonal changes in air-sea temperatures appear to limit the detection of the surface temperature gradients during the warmer months. A persistent seaward deflection of the western boundary is found southeastward of Charleston, South Carolina, in the vicinity of a bulge in the continental slope. The maximum deflection angle is time dependent and varies from 60° to 120° from true north. Downstream from the initial deflection, the western boundary is often wave-like. Several distinct and repeatable wave patterns are described. The separation between adjacent wave crests (wavelength) averages 150 km and the waves appear to move northward at an average phase speed of 40 km day?1. Monthly frequency distributions of wavelength show that values range from 90 to 260 km downstream from the deflection and wavelengths increase between February and April of 1977. The phase of the low-frequency wave motion is illustrated in space-time diagrams during February 1976 and April 1977. The small-scale cyclonic spin-off eddies previously described by Lee and Mayer (1977) as forming off Florida appear to increase in amplitude downstream from the deflection. On a seasonal time scale, the variability of the position of the western boundary of the Gulf Stream increases by a factor of 3 downstream from the deflection. This suggests that the current is forced by the change in the depth at the bulge in the continental slope off Charleston.
    • Download: (1.423Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Satellite Observations of the Influence of Bottom Topography on the Seaward Deflection of the Gulf Stream off Charleston, South Carolina

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4162762
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorLegeckis, Richard V.
    date accessioned2017-06-09T14:45:03Z
    date available2017-06-09T14:45:03Z
    date copyright1979/05/01
    date issued1979
    identifier issn0022-3670
    identifier otherams-25925.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4162762
    description abstractHigh-resolution thermal infrared data from the NOAA polar orbiting satellites are studied for the Gulf Stream between Florida and Cape Hatteras from the fall of 1974 to the spring of 1977. The sea surface temperature boundaries of the current are detectable in infrared images from fall to spring of each year. Seasonal changes in air-sea temperatures appear to limit the detection of the surface temperature gradients during the warmer months. A persistent seaward deflection of the western boundary is found southeastward of Charleston, South Carolina, in the vicinity of a bulge in the continental slope. The maximum deflection angle is time dependent and varies from 60° to 120° from true north. Downstream from the initial deflection, the western boundary is often wave-like. Several distinct and repeatable wave patterns are described. The separation between adjacent wave crests (wavelength) averages 150 km and the waves appear to move northward at an average phase speed of 40 km day?1. Monthly frequency distributions of wavelength show that values range from 90 to 260 km downstream from the deflection and wavelengths increase between February and April of 1977. The phase of the low-frequency wave motion is illustrated in space-time diagrams during February 1976 and April 1977. The small-scale cyclonic spin-off eddies previously described by Lee and Mayer (1977) as forming off Florida appear to increase in amplitude downstream from the deflection. On a seasonal time scale, the variability of the position of the western boundary of the Gulf Stream increases by a factor of 3 downstream from the deflection. This suggests that the current is forced by the change in the depth at the bulge in the continental slope off Charleston.
    publisherAmerican Meteorological Society
    titleSatellite Observations of the Influence of Bottom Topography on the Seaward Deflection of the Gulf Stream off Charleston, South Carolina
    typeJournal Paper
    journal volume9
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1979)009<0483:SOOTIO>2.0.CO;2
    journal fristpage483
    journal lastpage497
    treeJournal of Physical Oceanography:;1979:;Volume( 009 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian