YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stable Jet Modes: A Special Case of Eddy and Mean Flow Interaction

    Source: Journal of Physical Oceanography:;1978:;Volume( 008 ):;issue: 003::page 344
    Author:
    Mcwilliams, James C.
    DOI: 10.1175/1520-0485(1978)008<0344:SJMASC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The quasi-geostrophic, small-amplitude free modes of oscillation are examined for a midlatitude ocean basin with mean currents. Attention is restricted to a particular class of mean currents which are solutions of nonlinear, inviscid and unforced equations and whose free modes are all stable ones. Among the free modes are ones confined to the narrow regions where the mean jets are strongest. These modes, dubbed ?jet modes?, have the following properties: 1) their phase speed is in the direction of and of the order of magnitude of the mean jet maximum velocity; 2) they are vertically in phase and upper-layer intensified when the mean jet is upper-layer intensified in phase and the thermocline is shallow; 3) they have a broader horizontal scale in the deep water than in the thermocline; 4) they have horizontal critical layers whose local balance is a nonlinear rather than a frictional one; 5) their Doppler-shifted frequencies are proportional to a mean potential vorticity gradient dominated by the horizontal curvature of the, mean jet; 6) and their mean energy and potential vorticity flux divergences are small or?in the particular geometry of a channel?zero. It is argued that many of these features should characterize the transience of narrow jets in general, especially those features relating to the spatial structure of the modes. (The stability and dispersion relation characteristics should be more peculiar to the type of jet present.)
    • Download: (1.215Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stable Jet Modes: A Special Case of Eddy and Mean Flow Interaction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4162629
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorMcwilliams, James C.
    date accessioned2017-06-09T14:44:45Z
    date available2017-06-09T14:44:45Z
    date copyright1978/05/01
    date issued1978
    identifier issn0022-3670
    identifier otherams-25805.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4162629
    description abstractThe quasi-geostrophic, small-amplitude free modes of oscillation are examined for a midlatitude ocean basin with mean currents. Attention is restricted to a particular class of mean currents which are solutions of nonlinear, inviscid and unforced equations and whose free modes are all stable ones. Among the free modes are ones confined to the narrow regions where the mean jets are strongest. These modes, dubbed ?jet modes?, have the following properties: 1) their phase speed is in the direction of and of the order of magnitude of the mean jet maximum velocity; 2) they are vertically in phase and upper-layer intensified when the mean jet is upper-layer intensified in phase and the thermocline is shallow; 3) they have a broader horizontal scale in the deep water than in the thermocline; 4) they have horizontal critical layers whose local balance is a nonlinear rather than a frictional one; 5) their Doppler-shifted frequencies are proportional to a mean potential vorticity gradient dominated by the horizontal curvature of the, mean jet; 6) and their mean energy and potential vorticity flux divergences are small or?in the particular geometry of a channel?zero. It is argued that many of these features should characterize the transience of narrow jets in general, especially those features relating to the spatial structure of the modes. (The stability and dispersion relation characteristics should be more peculiar to the type of jet present.)
    publisherAmerican Meteorological Society
    titleStable Jet Modes: A Special Case of Eddy and Mean Flow Interaction
    typeJournal Paper
    journal volume8
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1978)008<0344:SJMASC>2.0.CO;2
    journal fristpage344
    journal lastpage362
    treeJournal of Physical Oceanography:;1978:;Volume( 008 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian