YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coastal Upwelling and Kelvin Waves with Small Longshore Topography

    Source: Journal of Physical Oceanography:;1978:;Volume( 008 ):;issue: 002::page 188
    Author:
    Killworth, Peter D.
    DOI: 10.1175/1520-0485(1978)008<0188:CUAKWW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A simple, uniformly stratified, linear model is developed to examine the effects on upwelling and internal Kelvin wave propagation of small, slow, longshore varying topography and coastline. The condition of no normal flow at the bottom yields correction terms with responses that propagate as Kelvin waves. For the first problem considered, a uniform wind stress is turned on abruptly. The response is fully three-dimensional with a zone of upwelling (downwelling) to the south of a ridge (canyon) near the shore. As time passes, the zone moves poleward and becomes centered over the topography. A complicated cyclonic and anticyclonic circulation is associated with a shoreward (seaward) flow over the ridge (canyon). If the basic state (i.e., the flow in the absence of topography) had no poleward undercurrent, the sign of the response is altered. The second problem considered the modification of an internal Kelvin wave by isolated topography. Energy is scattered into all vertical modes (i.e., the natural decomposition of the flat-bottom response with respect to the vertical). Most energy goes into neighboring modes. The response consists of a steady contribution over the topography and a traveling, free Kelvin wave. For high incoming modes (those with many zero crossings in the vertical), little energy is scattered., most of what is scattered goes into the steady contribution. For low incoming modes, much energy is lost, divided about equally between steady and traveling responses. Although this problem can only be thought of as a first attempt at understanding scattering of baroclinic coastal waves by topography, it may help to explain why only low-mode Kelvin waves are observed.
    • Download: (1.028Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coastal Upwelling and Kelvin Waves with Small Longshore Topography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4162614
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKillworth, Peter D.
    date accessioned2017-06-09T14:44:44Z
    date available2017-06-09T14:44:44Z
    date copyright1978/03/01
    date issued1978
    identifier issn0022-3670
    identifier otherams-25792.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4162614
    description abstractA simple, uniformly stratified, linear model is developed to examine the effects on upwelling and internal Kelvin wave propagation of small, slow, longshore varying topography and coastline. The condition of no normal flow at the bottom yields correction terms with responses that propagate as Kelvin waves. For the first problem considered, a uniform wind stress is turned on abruptly. The response is fully three-dimensional with a zone of upwelling (downwelling) to the south of a ridge (canyon) near the shore. As time passes, the zone moves poleward and becomes centered over the topography. A complicated cyclonic and anticyclonic circulation is associated with a shoreward (seaward) flow over the ridge (canyon). If the basic state (i.e., the flow in the absence of topography) had no poleward undercurrent, the sign of the response is altered. The second problem considered the modification of an internal Kelvin wave by isolated topography. Energy is scattered into all vertical modes (i.e., the natural decomposition of the flat-bottom response with respect to the vertical). Most energy goes into neighboring modes. The response consists of a steady contribution over the topography and a traveling, free Kelvin wave. For high incoming modes (those with many zero crossings in the vertical), little energy is scattered., most of what is scattered goes into the steady contribution. For low incoming modes, much energy is lost, divided about equally between steady and traveling responses. Although this problem can only be thought of as a first attempt at understanding scattering of baroclinic coastal waves by topography, it may help to explain why only low-mode Kelvin waves are observed.
    publisherAmerican Meteorological Society
    titleCoastal Upwelling and Kelvin Waves with Small Longshore Topography
    typeJournal Paper
    journal volume8
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1978)008<0188:CUAKWW>2.0.CO;2
    journal fristpage188
    journal lastpage205
    treeJournal of Physical Oceanography:;1978:;Volume( 008 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian