YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Antarctic Polar Front Zone in the Western Scotia Sea—Summer 1975

    Source: Journal of Physical Oceanography:;1977:;Volume( 007 ):;issue: 003::page 309
    Author:
    Gordon, A. L.
    ,
    Georgi, D. T.
    ,
    Taylor, H. W.
    DOI: 10.1175/1520-0485(1977)007<0309:APFZIT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The component of the FDRAKE-75 data obtained by the R/V Conrad in the western Scotia Sea reveals a definite sequence of thermohaline stratification zones encountered on passing from Antarctic to Sub-antarctic waters. A Polar Front Zone, displaying multiple temperature minima, separates the Antarctic Zone, characterized by a single intense T-min above 200 m, from the Subantarctic Zone with its nearly isohaline layer from 100 m to over 400 m. The Antarctic Zones of the Weddell and the Scotia Seas aye separated by a cold, relatively homogeneous zone situated in the southern Scotia Sea called the Weddell-Scotia Confluence. The boundaries of the Polar Front Zone are highly meandered and isolated eddies of Subantarctic water may occur within the zone. The main axis of the Antarctic Circumpolar Current apparently lies close to the Subantarctic boundary of the, Polar Front Zone, while a secondary axis is associated with the southern limit of the Polar Front Zone. Inspection of the Islas Orcadas and Melville data, the western section of the FDRAKE-75 data set, also shows a meandered Polar Front Zone. It further suggests the possibility of eddies of Polar Front Zone water within the Subantarctic Zone. The thick, nearly isohaline layer of the Subantarctic Zone possesses a weak negative salinity gradient (at least within a few hundred kilometers of the Polar Front Zone). It is proposed that this structure is a remnant of a winter period homogeneous layer, which is altered from above by summer sea-air interaction and from below by upward mixing of Antarctic water introduced into the Subantarctic Zone by cross-frontal isopycnal exchange. This latter process may cool and freshen the overall characteristics of the Subantarctic water in relation to expected characteristics by local sea-air factors.
    • Download: (1.316Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Antarctic Polar Front Zone in the Western Scotia Sea—Summer 1975

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4162509
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorGordon, A. L.
    contributor authorGeorgi, D. T.
    contributor authorTaylor, H. W.
    date accessioned2017-06-09T14:44:31Z
    date available2017-06-09T14:44:31Z
    date copyright1977/05/01
    date issued1977
    identifier issn0022-3670
    identifier otherams-25698.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4162509
    description abstractThe component of the FDRAKE-75 data obtained by the R/V Conrad in the western Scotia Sea reveals a definite sequence of thermohaline stratification zones encountered on passing from Antarctic to Sub-antarctic waters. A Polar Front Zone, displaying multiple temperature minima, separates the Antarctic Zone, characterized by a single intense T-min above 200 m, from the Subantarctic Zone with its nearly isohaline layer from 100 m to over 400 m. The Antarctic Zones of the Weddell and the Scotia Seas aye separated by a cold, relatively homogeneous zone situated in the southern Scotia Sea called the Weddell-Scotia Confluence. The boundaries of the Polar Front Zone are highly meandered and isolated eddies of Subantarctic water may occur within the zone. The main axis of the Antarctic Circumpolar Current apparently lies close to the Subantarctic boundary of the, Polar Front Zone, while a secondary axis is associated with the southern limit of the Polar Front Zone. Inspection of the Islas Orcadas and Melville data, the western section of the FDRAKE-75 data set, also shows a meandered Polar Front Zone. It further suggests the possibility of eddies of Polar Front Zone water within the Subantarctic Zone. The thick, nearly isohaline layer of the Subantarctic Zone possesses a weak negative salinity gradient (at least within a few hundred kilometers of the Polar Front Zone). It is proposed that this structure is a remnant of a winter period homogeneous layer, which is altered from above by summer sea-air interaction and from below by upward mixing of Antarctic water introduced into the Subantarctic Zone by cross-frontal isopycnal exchange. This latter process may cool and freshen the overall characteristics of the Subantarctic water in relation to expected characteristics by local sea-air factors.
    publisherAmerican Meteorological Society
    titleAntarctic Polar Front Zone in the Western Scotia Sea—Summer 1975
    typeJournal Paper
    journal volume7
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1977)007<0309:APFZIT>2.0.CO;2
    journal fristpage309
    journal lastpage328
    treeJournal of Physical Oceanography:;1977:;Volume( 007 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian