YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modal Decomposition of the Velocity Field near the Oregon Coast

    Source: Journal of Physical Oceanography:;1975:;Volume( 005 ):;issue: 004::page 683
    Author:
    Kundu, Pijush K.
    ,
    Allen, J. S.
    ,
    Smith, Robert L.
    DOI: 10.1175/1520-0485(1975)005<0683:MDOTVF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The low-frequency [?<0.5 cycle per day (cpd)] current fluctuations at four depths in 100 m of waterhave been investigated for two stations on the continental shelf off the coast of Oregon. One station, DB-7,was maintained during the summer of 1972 as part of the Coastal Upwelling Experiment-1 (CUE-I), and theother station, Carnation, was maintained during the summer of 1973 as part of CUE-II. A decomposition ofthe north-south (almost alongshore) v and the east-west (onshore-offshore) u components of the current hasbeen performed in terms of two types of modal structures in the vertical direction: (i) dynamic modes determined by the separable solutions of the appropriate equations of motion, and (ii) empirical orthogonal modeswhich are the eigenvectors of the correlation matrix and depend only on the statistics of the data. For thealongshore currents, the standard deviation of the dynamic barotropic mode is found to be twice as large asthat of the first baroclinic mode. The barotropic part is found to be correlated with the north-south component of the wind stress τw and the sea level, whereas the first mode baroclinic part is found to be correlatedwith the temperature fluctuations. The first empirical eigenmode accounts for about 91% of the energy andis fairly depth-independent, whereas the second empirical eigenmode accounts for about 7% of the energyand resembles the first dynamic baroclinic mode. Spectral analysis shows high mutal coherence between thebarotropic modes for the u and v components and the wind stress nr at the frequencies 0.06 cpd in 1973 and0.14 cpd in 1972. Results from a theoretical model show that the observed values of the phase relations atthese frequencies are consistent with a resonant condition between the wind stress and forced, long, barotropic continental shelf waves.
    • Download: (1.521Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modal Decomposition of the Velocity Field near the Oregon Coast

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4162346
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKundu, Pijush K.
    contributor authorAllen, J. S.
    contributor authorSmith, Robert L.
    date accessioned2017-06-09T14:44:09Z
    date available2017-06-09T14:44:09Z
    date copyright1975/10/01
    date issued1975
    identifier issn0022-3670
    identifier otherams-25550.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4162346
    description abstractThe low-frequency [?<0.5 cycle per day (cpd)] current fluctuations at four depths in 100 m of waterhave been investigated for two stations on the continental shelf off the coast of Oregon. One station, DB-7,was maintained during the summer of 1972 as part of the Coastal Upwelling Experiment-1 (CUE-I), and theother station, Carnation, was maintained during the summer of 1973 as part of CUE-II. A decomposition ofthe north-south (almost alongshore) v and the east-west (onshore-offshore) u components of the current hasbeen performed in terms of two types of modal structures in the vertical direction: (i) dynamic modes determined by the separable solutions of the appropriate equations of motion, and (ii) empirical orthogonal modeswhich are the eigenvectors of the correlation matrix and depend only on the statistics of the data. For thealongshore currents, the standard deviation of the dynamic barotropic mode is found to be twice as large asthat of the first baroclinic mode. The barotropic part is found to be correlated with the north-south component of the wind stress τw and the sea level, whereas the first mode baroclinic part is found to be correlatedwith the temperature fluctuations. The first empirical eigenmode accounts for about 91% of the energy andis fairly depth-independent, whereas the second empirical eigenmode accounts for about 7% of the energyand resembles the first dynamic baroclinic mode. Spectral analysis shows high mutal coherence between thebarotropic modes for the u and v components and the wind stress nr at the frequencies 0.06 cpd in 1973 and0.14 cpd in 1972. Results from a theoretical model show that the observed values of the phase relations atthese frequencies are consistent with a resonant condition between the wind stress and forced, long, barotropic continental shelf waves.
    publisherAmerican Meteorological Society
    titleModal Decomposition of the Velocity Field near the Oregon Coast
    typeJournal Paper
    journal volume5
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1975)005<0683:MDOTVF>2.0.CO;2
    journal fristpage683
    journal lastpage704
    treeJournal of Physical Oceanography:;1975:;Volume( 005 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian