YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stratiform Precipitation in Regions of Convection: A Meteorological Paradox?

    Source: Bulletin of the American Meteorological Society:;1997:;volume( 078 ):;issue: 010::page 2179
    Author:
    Houze, Robert A.
    DOI: 10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: It was once generally thought that stratiform precipitation was something occurring primarily, if not exclusively, in middle latitudes?in baroclinic cyclones and fronts. Early radar observations in the Tropics, however, showed large radar echoes composed of convective rain alongside stratiform precipitation, with the stratiform echoes covering great areas and accounting for a large portion of the tropical rainfall. These observations seemed paradoxical, since stratiform precipitation should not have been occurring in the Tropics, where baroclinic cyclones do not occur. Instead it was falling from convection-generated clouds, generally thought to be too violent to be compatible with the layered, gently settling behavior of stratiform precipitation. In meteorology, convection is a dynamic concept; specifically, it is the rapid, efficient, vigorous overturning of the atmosphere required to neutralize an unstable vertical distribution of moist static energy. Most clouds in the Tropics are convection-generated cumulonimbus. These cumulonimbus clouds contain an evolving pattern of newer and older precipitation. The young portions of the cumulonimbus are too violent to produce stratiform precipitation. In young, vigorous convective regions of the cumulonimbus, precipitation particles increase their mass by collection of cloud water, and the particles fall out in heavy showers, which appear on radar as vertically oriented convective ?cells.? In regions of older convection, however, the vertical air motions are generally weaker, and the precipitation particles drift downward, with the particles increasing their mass by vapor diffusion. In these regions the radar echoes are stratiform, and typically these echoes occur adjacent to regions of younger convective showers. Thus, the stratiform and convective precipitation both occur within the same complex of convection-generated cumulonimbus cloud. The feedbacks of the apparent heat source and moisture sink of tropical cumulonimbus convection to the large-scale dynamics of the atmosphere are distinctly separable by precipitation region. The part of the atmospheric response deriving from the areas of young, vigorous convective cells is two layered, with air converging into the active convection at low levels and diverging aloft. The older, weaker intermediary and stratiform precipitation areas induce a three-layered response, in which environmental air converges into the weak precipitation area at midlevels and diverges from it at lower and upper levels. If global precipitation data, such as that to be provided by the Tropical Rainfall Measuring Mission, are to be used to validate the heating patterns predicted by climate and general circulation models, algorithms must be applied to the precipitation data that will identify the two principal modes of heating, by separating the convective component of the precipitation from the remainder.
    • Download: (583.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stratiform Precipitation in Regions of Convection: A Meteorological Paradox?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4161469
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorHouze, Robert A.
    date accessioned2017-06-09T14:42:00Z
    date available2017-06-09T14:42:00Z
    date copyright1997/10/01
    date issued1997
    identifier issn0003-0007
    identifier otherams-24761.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4161469
    description abstractIt was once generally thought that stratiform precipitation was something occurring primarily, if not exclusively, in middle latitudes?in baroclinic cyclones and fronts. Early radar observations in the Tropics, however, showed large radar echoes composed of convective rain alongside stratiform precipitation, with the stratiform echoes covering great areas and accounting for a large portion of the tropical rainfall. These observations seemed paradoxical, since stratiform precipitation should not have been occurring in the Tropics, where baroclinic cyclones do not occur. Instead it was falling from convection-generated clouds, generally thought to be too violent to be compatible with the layered, gently settling behavior of stratiform precipitation. In meteorology, convection is a dynamic concept; specifically, it is the rapid, efficient, vigorous overturning of the atmosphere required to neutralize an unstable vertical distribution of moist static energy. Most clouds in the Tropics are convection-generated cumulonimbus. These cumulonimbus clouds contain an evolving pattern of newer and older precipitation. The young portions of the cumulonimbus are too violent to produce stratiform precipitation. In young, vigorous convective regions of the cumulonimbus, precipitation particles increase their mass by collection of cloud water, and the particles fall out in heavy showers, which appear on radar as vertically oriented convective ?cells.? In regions of older convection, however, the vertical air motions are generally weaker, and the precipitation particles drift downward, with the particles increasing their mass by vapor diffusion. In these regions the radar echoes are stratiform, and typically these echoes occur adjacent to regions of younger convective showers. Thus, the stratiform and convective precipitation both occur within the same complex of convection-generated cumulonimbus cloud. The feedbacks of the apparent heat source and moisture sink of tropical cumulonimbus convection to the large-scale dynamics of the atmosphere are distinctly separable by precipitation region. The part of the atmospheric response deriving from the areas of young, vigorous convective cells is two layered, with air converging into the active convection at low levels and diverging aloft. The older, weaker intermediary and stratiform precipitation areas induce a three-layered response, in which environmental air converges into the weak precipitation area at midlevels and diverges from it at lower and upper levels. If global precipitation data, such as that to be provided by the Tropical Rainfall Measuring Mission, are to be used to validate the heating patterns predicted by climate and general circulation models, algorithms must be applied to the precipitation data that will identify the two principal modes of heating, by separating the convective component of the precipitation from the remainder.
    publisherAmerican Meteorological Society
    titleStratiform Precipitation in Regions of Convection: A Meteorological Paradox?
    typeJournal Paper
    journal volume78
    journal issue10
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2
    journal fristpage2179
    journal lastpage2196
    treeBulletin of the American Meteorological Society:;1997:;volume( 078 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian