YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An observational Study of the “Interstate 5” Dust Storm Case

    Source: Bulletin of the American Meteorological Society:;1996:;volume( 077 ):;issue: 004::page 693
    Author:
    Pauley, Patricia M.
    ,
    Baker, Nancy L.
    ,
    Barker, Edward H.
    DOI: 10.1175/1520-0477(1996)077<0693:AOSOTD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: On 29 November 1991 a series of collisions involving 164 vehicles occurred on Interstate 5 in the San Joaquin Valley in California in a dust storm that reduced the visibility to near zero. The accompanying high surface winds are hypothesized to result from intense upper-tropospheric downward motion that led to the formation of a strong upper front and tropopause fold and that transported high momentum air downward to midlevels where boundary layer processes could then mix it to the surface. The objectives of the research presented in this paper are to document the event, to provide support for the hypothesis that both upper-level and boundary layer processes were important, and to determine the structure of the mesoscale circulations in this case for future use in evaluating the navy's mesoscale data assimilation system. The strong upper-level descent present in this case is consistent with what one would expect for jet streak and frontal circulations in combination with quasigeostrophic processes. During the period examined, upper-level data and analyses portray a strong upper-tropospheric jet streak with maximum winds initially in excess of 85 m s?1 (≈170 kt) that weakened as it propagated southward around the base of a long-wave trough. The jet streak was accompanied by a strong upper front and tropopause fold, both of which imply intense downward motion. The vertical motion field near the time of the accidents had two maxima?one that was associated with a combination of quasigeostrophic forcing and terrain-induced descent in the let of the Sierra and one that was associated with the descending branch of the secondary circulation in the jet streak exit region and the cold advection by both the geostrophic wind and the ageostrophic wind in the upper front. The 700-hPa wind speed maximum over and west of the San Joaquin Valley overlapped with the latter maximum, supporting the hypothesized role of downward momentum transport. Given the significant 700-hPa wind speeds over the San Joaquin Valley during daytime hours on the day of the collisions, boundary layer mixing associated with solar heating of the earth's surface was then able to generate high surface winds. Once the high surface winds began, a dust storm was inevitable, since winter rains had not yet seed and soil conditions were drier than usual in this sixth consecutive drought year. Surface observations from a variety of sources depict blowing dust and high surface winds at numerous locations in the San Joaguin Valley, the Mojave and other desert sites, and in the Los Angeles Basin and other south coast sites. High surface winds and low visibilities began in the late morning at desert and valley sites and lasted until just after sunset, consistent with the hypothesized heating-induced mixing. The 0000 UTC soundings in California portrayed an adiabatic layer from the surface to at least 750 hPa, also supporting the existence of mixing. On the other hand, the high winds in the Los Angeles Basin began near sunset in the wake of a propagating mesoscale trough that appeared to have formed in the lee of the mountains that separate the Los Angeles Basin from the San Joaquin Valley.
    • Download: (3.863Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An observational Study of the “Interstate 5” Dust Storm Case

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4161336
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorPauley, Patricia M.
    contributor authorBaker, Nancy L.
    contributor authorBarker, Edward H.
    date accessioned2017-06-09T14:41:42Z
    date available2017-06-09T14:41:42Z
    date copyright1996/04/01
    date issued1996
    identifier issn0003-0007
    identifier otherams-24641.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4161336
    description abstractOn 29 November 1991 a series of collisions involving 164 vehicles occurred on Interstate 5 in the San Joaquin Valley in California in a dust storm that reduced the visibility to near zero. The accompanying high surface winds are hypothesized to result from intense upper-tropospheric downward motion that led to the formation of a strong upper front and tropopause fold and that transported high momentum air downward to midlevels where boundary layer processes could then mix it to the surface. The objectives of the research presented in this paper are to document the event, to provide support for the hypothesis that both upper-level and boundary layer processes were important, and to determine the structure of the mesoscale circulations in this case for future use in evaluating the navy's mesoscale data assimilation system. The strong upper-level descent present in this case is consistent with what one would expect for jet streak and frontal circulations in combination with quasigeostrophic processes. During the period examined, upper-level data and analyses portray a strong upper-tropospheric jet streak with maximum winds initially in excess of 85 m s?1 (≈170 kt) that weakened as it propagated southward around the base of a long-wave trough. The jet streak was accompanied by a strong upper front and tropopause fold, both of which imply intense downward motion. The vertical motion field near the time of the accidents had two maxima?one that was associated with a combination of quasigeostrophic forcing and terrain-induced descent in the let of the Sierra and one that was associated with the descending branch of the secondary circulation in the jet streak exit region and the cold advection by both the geostrophic wind and the ageostrophic wind in the upper front. The 700-hPa wind speed maximum over and west of the San Joaquin Valley overlapped with the latter maximum, supporting the hypothesized role of downward momentum transport. Given the significant 700-hPa wind speeds over the San Joaquin Valley during daytime hours on the day of the collisions, boundary layer mixing associated with solar heating of the earth's surface was then able to generate high surface winds. Once the high surface winds began, a dust storm was inevitable, since winter rains had not yet seed and soil conditions were drier than usual in this sixth consecutive drought year. Surface observations from a variety of sources depict blowing dust and high surface winds at numerous locations in the San Joaguin Valley, the Mojave and other desert sites, and in the Los Angeles Basin and other south coast sites. High surface winds and low visibilities began in the late morning at desert and valley sites and lasted until just after sunset, consistent with the hypothesized heating-induced mixing. The 0000 UTC soundings in California portrayed an adiabatic layer from the surface to at least 750 hPa, also supporting the existence of mixing. On the other hand, the high winds in the Los Angeles Basin began near sunset in the wake of a propagating mesoscale trough that appeared to have formed in the lee of the mountains that separate the Los Angeles Basin from the San Joaquin Valley.
    publisherAmerican Meteorological Society
    titleAn observational Study of the “Interstate 5” Dust Storm Case
    typeJournal Paper
    journal volume77
    journal issue4
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/1520-0477(1996)077<0693:AOSOTD>2.0.CO;2
    journal fristpage693
    journal lastpage720
    treeBulletin of the American Meteorological Society:;1996:;volume( 077 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian