YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Winter 1994 Weather and Ice Conditions for the Laurentian Great Lakes

    Source: Bulletin of the American Meteorological Society:;1996:;volume( 077 ):;issue: 001::page 71
    Author:
    Assel, Raymond A.
    ,
    Janowiak, John E.
    ,
    Young, Sharolyn
    ,
    Boyce, Daron
    DOI: 10.1175/1520-0477(1996)077<0071:WWAICF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Laurentian Great Lakes developed their most extensive ice cover in over a decade during winter 1994 [December-February 1993/94 (DJF 94)]. Extensive midlake ice formation started the second half of January, about 2 weeks earlier than normal. Seasonal maximal ice extent occurred in early February, again about 2 weeks earlier than normal. Winter 1994 maximum (normal) ice coverages on the Great Lakes are Lake Superior 96% (75%), Lake Michigan 78% (45%), Lake Huron 95% (68%), Lake Erie 97% (90%), and Lake Ontario 67% (24%). Relative to the prior 31 winters (1963?93), the extent of seasonal maximal ice cover for winter 1994 for the Great Lakes taken as a unit is exceeded by only one other winter (1979); however, other winters for individual Great Lakes had similar maximal ice covers. Anomalously strong anticyclonic circulation over the central North Pacific (extending to the North Pole) and an abnormally strong polar vortex centered over northern Hudson Bay combined to produce a circulation pattern that brought frequent air masses of Arctic and polar origin to the eastern third of North America. New records were set for minimum temperatures on 19 January 1994 at many locations in the Great Lakes region. A winter severity index consisting of the average November-February air temperatures averaged over four sites on the perimeter of the Great Lakes (Duluth, Minnesota; Sault Ste. Marie, Michigan; Detroit, Michigan; and Buffalo, New York) indicates that winter 1994 was the 21st coldest since 1779. The unseasonably cold air temperatures produced much-above-normal ice cover over the Great Lakes and created problems for lake shipping. Numerous fatalities and injuries were attributed to the winter weather, which included several ice and snow storms. The much-below-normal air temperatures resulted in enhanced lake-effect snowfall along downwind lake shores, particularly during early to midwinter, prior to extensive ice formation in deeper lake areas. The low air temperatures were also responsible for record 1-day electrical usage and multimillion dollar costs associated with snow removal, U.S. and Canadian Coast Guard operational assistance to ships beset in ice, damage to ships by ice, damage to public and private property by river ice jams and associated flooding, frozen underground water pipes, and damage to fruit trees.
    • Download: (1.882Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Winter 1994 Weather and Ice Conditions for the Laurentian Great Lakes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4161311
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorAssel, Raymond A.
    contributor authorJanowiak, John E.
    contributor authorYoung, Sharolyn
    contributor authorBoyce, Daron
    date accessioned2017-06-09T14:41:39Z
    date available2017-06-09T14:41:39Z
    date copyright1996/01/01
    date issued1996
    identifier issn0003-0007
    identifier otherams-24619.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4161311
    description abstractThe Laurentian Great Lakes developed their most extensive ice cover in over a decade during winter 1994 [December-February 1993/94 (DJF 94)]. Extensive midlake ice formation started the second half of January, about 2 weeks earlier than normal. Seasonal maximal ice extent occurred in early February, again about 2 weeks earlier than normal. Winter 1994 maximum (normal) ice coverages on the Great Lakes are Lake Superior 96% (75%), Lake Michigan 78% (45%), Lake Huron 95% (68%), Lake Erie 97% (90%), and Lake Ontario 67% (24%). Relative to the prior 31 winters (1963?93), the extent of seasonal maximal ice cover for winter 1994 for the Great Lakes taken as a unit is exceeded by only one other winter (1979); however, other winters for individual Great Lakes had similar maximal ice covers. Anomalously strong anticyclonic circulation over the central North Pacific (extending to the North Pole) and an abnormally strong polar vortex centered over northern Hudson Bay combined to produce a circulation pattern that brought frequent air masses of Arctic and polar origin to the eastern third of North America. New records were set for minimum temperatures on 19 January 1994 at many locations in the Great Lakes region. A winter severity index consisting of the average November-February air temperatures averaged over four sites on the perimeter of the Great Lakes (Duluth, Minnesota; Sault Ste. Marie, Michigan; Detroit, Michigan; and Buffalo, New York) indicates that winter 1994 was the 21st coldest since 1779. The unseasonably cold air temperatures produced much-above-normal ice cover over the Great Lakes and created problems for lake shipping. Numerous fatalities and injuries were attributed to the winter weather, which included several ice and snow storms. The much-below-normal air temperatures resulted in enhanced lake-effect snowfall along downwind lake shores, particularly during early to midwinter, prior to extensive ice formation in deeper lake areas. The low air temperatures were also responsible for record 1-day electrical usage and multimillion dollar costs associated with snow removal, U.S. and Canadian Coast Guard operational assistance to ships beset in ice, damage to ships by ice, damage to public and private property by river ice jams and associated flooding, frozen underground water pipes, and damage to fruit trees.
    publisherAmerican Meteorological Society
    titleWinter 1994 Weather and Ice Conditions for the Laurentian Great Lakes
    typeJournal Paper
    journal volume77
    journal issue1
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/1520-0477(1996)077<0071:WWAICF>2.0.CO;2
    journal fristpage71
    journal lastpage88
    treeBulletin of the American Meteorological Society:;1996:;volume( 077 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian