YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Global Precipitation Climatology Project: First Algorithm Intercomparison Project

    Source: Bulletin of the American Meteorological Society:;1994:;volume( 075 ):;issue: 003::page 401
    Author:
    Arkin, Phillip A.
    ,
    Xie, Pingping
    DOI: 10.1175/1520-0477(1994)075<0401:TGPCPF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Programme to produce global analyses of area- and time-averaged precipitation for use in climate research. To achieve the required spatial coverage, the GPCP uses simple rainfall estimates derived from IR and microwave satellite observations. In this paper, we describe the GPCP and its first Algorithm Intercomparison Project(AIP/1),which compared a variety of rainfall estimates derived from Geostationary Meteorological Satellite visible and IR observations and Special Sensor Microwave/Imager microwave observations with rainfall derived from a combination of radar and raingage data over the Japanese islands and the adjacent ocean regions during the June and mid-July through mid-August periods of 1989. To investigate potential improvements in the use of satellite IR data for the estimation of large-scale rainfall for the GPCP, the relationship between rainfall and the fractional coverage of cold clouds in the AIP/1 dataset is examined. linear regressions between fractional coverage and rainfall are analyzed for a number of latitude-longitude areas and for a range of averaging times. The results show distinct differences in the character of the relationship for different portions of the area. In general, to the south and east of the mountainous axis of Japan, rainfall and fractional coverage are highly correlated for thresholds colder than 245 K, and correlations can be increased by averaging in space and in time up to the dominant period of the precipitation events. To the north and west of the axis, the correlations between rainfall and fractional coverage, while generally smaller for all scales, are highest for thresholds warmer than 245 K. The proportional coefficients relating rainfall to fractional coverage at cold thresholds, however, differ greatly between the two periods and both differ significantly from those found for the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment. These results suggest that the simple IR-based estimation technique currently used in the GPCP can be used to estimate rainfall for global tropical and subtropical areas, provided that a method for adjusting the proportional coefficient for varying areas and seasons can be determined.
    • Download: (2.392Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Global Precipitation Climatology Project: First Algorithm Intercomparison Project

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4161196
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorArkin, Phillip A.
    contributor authorXie, Pingping
    date accessioned2017-06-09T14:41:21Z
    date available2017-06-09T14:41:21Z
    date copyright1994/03/01
    date issued1994
    identifier issn0003-0007
    identifier otherams-24515.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4161196
    description abstractThe Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Programme to produce global analyses of area- and time-averaged precipitation for use in climate research. To achieve the required spatial coverage, the GPCP uses simple rainfall estimates derived from IR and microwave satellite observations. In this paper, we describe the GPCP and its first Algorithm Intercomparison Project(AIP/1),which compared a variety of rainfall estimates derived from Geostationary Meteorological Satellite visible and IR observations and Special Sensor Microwave/Imager microwave observations with rainfall derived from a combination of radar and raingage data over the Japanese islands and the adjacent ocean regions during the June and mid-July through mid-August periods of 1989. To investigate potential improvements in the use of satellite IR data for the estimation of large-scale rainfall for the GPCP, the relationship between rainfall and the fractional coverage of cold clouds in the AIP/1 dataset is examined. linear regressions between fractional coverage and rainfall are analyzed for a number of latitude-longitude areas and for a range of averaging times. The results show distinct differences in the character of the relationship for different portions of the area. In general, to the south and east of the mountainous axis of Japan, rainfall and fractional coverage are highly correlated for thresholds colder than 245 K, and correlations can be increased by averaging in space and in time up to the dominant period of the precipitation events. To the north and west of the axis, the correlations between rainfall and fractional coverage, while generally smaller for all scales, are highest for thresholds warmer than 245 K. The proportional coefficients relating rainfall to fractional coverage at cold thresholds, however, differ greatly between the two periods and both differ significantly from those found for the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment. These results suggest that the simple IR-based estimation technique currently used in the GPCP can be used to estimate rainfall for global tropical and subtropical areas, provided that a method for adjusting the proportional coefficient for varying areas and seasons can be determined.
    publisherAmerican Meteorological Society
    titleThe Global Precipitation Climatology Project: First Algorithm Intercomparison Project
    typeJournal Paper
    journal volume75
    journal issue3
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/1520-0477(1994)075<0401:TGPCPF>2.0.CO;2
    journal fristpage401
    journal lastpage419
    treeBulletin of the American Meteorological Society:;1994:;volume( 075 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian