YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    •   YE&T Library
    • AMS
    • Bulletin of the American Meteorological Society
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Prediction, Chaos, and Noise

    Source: Bulletin of the American Meteorological Society:;1992:;volume( 073 ):;issue: 001::page 49
    Author:
    Elsner, J. B.
    ,
    Tsonis, A. A.
    DOI: 10.1175/1520-0477(1992)073<0049:NPCAN>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: We present a brief overview of some new methodologies for making predictions on time-series data. These ideas stern from two rapidly growing fields: nonlinear dynamics (choas) theory and parallel distributed processing. Examples are presented that show the usefulness of such methods in making short-term predictions. It is suggested that such methodologies are capable of distinguishing between chaos and noise. Implications of these ideas and methods in the study of weather and climate are discussed.
    • Download: (952.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Prediction, Chaos, and Noise

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4161049
    Collections
    • Bulletin of the American Meteorological Society

    Show full item record

    contributor authorElsner, J. B.
    contributor authorTsonis, A. A.
    date accessioned2017-06-09T14:40:58Z
    date available2017-06-09T14:40:58Z
    date copyright1992/01/01
    date issued1992
    identifier issn0003-0007
    identifier otherams-24383.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4161049
    description abstractWe present a brief overview of some new methodologies for making predictions on time-series data. These ideas stern from two rapidly growing fields: nonlinear dynamics (choas) theory and parallel distributed processing. Examples are presented that show the usefulness of such methods in making short-term predictions. It is suggested that such methodologies are capable of distinguishing between chaos and noise. Implications of these ideas and methods in the study of weather and climate are discussed.
    publisherAmerican Meteorological Society
    titleNonlinear Prediction, Chaos, and Noise
    typeJournal Paper
    journal volume73
    journal issue1
    journal titleBulletin of the American Meteorological Society
    identifier doi10.1175/1520-0477(1992)073<0049:NPCAN>2.0.CO;2
    journal fristpage49
    journal lastpage60
    treeBulletin of the American Meteorological Society:;1992:;volume( 073 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian