YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Atmospheric Energy Budget and Large-Scale Precipitation Efficiency of Convective Systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-Resolving Model Simulations

    Source: Journal of the Atmospheric Sciences:;2004:;Volume( 061 ):;issue: 020::page 2405
    Author:
    Tao, W-K.
    ,
    Johnson, D.
    ,
    Shie, C-L.
    ,
    Simpson, J.
    DOI: 10.1175/1520-0469(2004)061<2405:TAEBAL>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate convective systems that developed in various geographic locations (east Atlantic, west Pacific, South China Sea, and Great Plains in the United States). Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. The atmospheric temperature and water vapor budgets from the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases though not for midlatitude continental cases. These two terms are opposite in sign, however, and are not the dominant terms in the moist static energy budget. The balance between net radiation, surface latent heat flux, and net condensational heating vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) is not negligible in the temperature budget; it is as large as 20% of the net condensation. However, shortwave heating and longwave cooling are in balance with each other for cloud systems over the west Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. The large-scale advection of moist static energy is negative, as a result of a larger absolute value of large-scale advection of sensible heat (cooling) compared to large-scale latent heat (moistening) advection in the Pacific and Atlantic cases. For three cloud systems that developed over a midlatitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means that the accurate measurement of surface fluxes and radiation is crucial for simulating these midlatitude cases. The results showed that large-scale mean (multiday) precipitation efficiency (PE) varies from 24% to 31% (or 32% to 45% using a different definition of PE) between cloud systems from different geographic locations. The model results showed that there is no clear relationship between the PE and rainfall, the positive cloud condensation (condensation plus deposition), or the large-scale forcing. But, the model results suggest that cases with large, positive net condensation terms in the moist static energy budget tend to have a large PE. The PE and its relationship with relative humidity and the vertical shear of the horizontal wind are also examined using 6-hourly model data. The model results suggest that there is no clear relationship between the individual PE and total mass-weighted relative humidity or the middle- and upper-tropospheric moisture for each case. The model results suggest that for the west Pacific and east Atlantic cases, PE slightly decreases with increasing middle-tropospheric wind shear in low to moderate shear regimes. The correlation (based on the best polynomial fit) is quite weak however. No strong relationship between PE and wind shear was found for the South China Sea and cases over the United States.
    • Download: (385.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Atmospheric Energy Budget and Large-Scale Precipitation Efficiency of Convective Systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-Resolving Model Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4160135
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorTao, W-K.
    contributor authorJohnson, D.
    contributor authorShie, C-L.
    contributor authorSimpson, J.
    date accessioned2017-06-09T14:38:57Z
    date available2017-06-09T14:38:57Z
    date copyright2004/10/01
    date issued2004
    identifier issn0022-4928
    identifier otherams-23560.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4160135
    description abstractA two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate convective systems that developed in various geographic locations (east Atlantic, west Pacific, South China Sea, and Great Plains in the United States). Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. The atmospheric temperature and water vapor budgets from the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases though not for midlatitude continental cases. These two terms are opposite in sign, however, and are not the dominant terms in the moist static energy budget. The balance between net radiation, surface latent heat flux, and net condensational heating vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) is not negligible in the temperature budget; it is as large as 20% of the net condensation. However, shortwave heating and longwave cooling are in balance with each other for cloud systems over the west Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. The large-scale advection of moist static energy is negative, as a result of a larger absolute value of large-scale advection of sensible heat (cooling) compared to large-scale latent heat (moistening) advection in the Pacific and Atlantic cases. For three cloud systems that developed over a midlatitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means that the accurate measurement of surface fluxes and radiation is crucial for simulating these midlatitude cases. The results showed that large-scale mean (multiday) precipitation efficiency (PE) varies from 24% to 31% (or 32% to 45% using a different definition of PE) between cloud systems from different geographic locations. The model results showed that there is no clear relationship between the PE and rainfall, the positive cloud condensation (condensation plus deposition), or the large-scale forcing. But, the model results suggest that cases with large, positive net condensation terms in the moist static energy budget tend to have a large PE. The PE and its relationship with relative humidity and the vertical shear of the horizontal wind are also examined using 6-hourly model data. The model results suggest that there is no clear relationship between the individual PE and total mass-weighted relative humidity or the middle- and upper-tropospheric moisture for each case. The model results suggest that for the west Pacific and east Atlantic cases, PE slightly decreases with increasing middle-tropospheric wind shear in low to moderate shear regimes. The correlation (based on the best polynomial fit) is quite weak however. No strong relationship between PE and wind shear was found for the South China Sea and cases over the United States.
    publisherAmerican Meteorological Society
    titleThe Atmospheric Energy Budget and Large-Scale Precipitation Efficiency of Convective Systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-Resolving Model Simulations
    typeJournal Paper
    journal volume61
    journal issue20
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2004)061<2405:TAEBAL>2.0.CO;2
    journal fristpage2405
    journal lastpage2423
    treeJournal of the Atmospheric Sciences:;2004:;Volume( 061 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian