YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Dynamics and Chaos in the Sea and Land Breeze

    Source: Journal of the Atmospheric Sciences:;2004:;Volume( 061 ):;issue: 017::page 2169
    Author:
    Feliks, Yizhak
    DOI: 10.1175/1520-0469(2004)061<2169:NDACIT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this work the evolution of the sea and land breeze is studied using a nonlinear model under calm synoptic conditions and diurnal periodic forcing of ground temperature. The breeze is examined as a function of the strength of the heating amplitude of ground temperature ?0. For ?0 ≤ 6°C, the solution is quasi-periodic with two incommensurate oscillations of 24 and 22.6 h; the last is the inertial oscillation at latitude 32°N. A very low frequency oscillation (VLFO) of 16 days, which is the linear combination of the two incommensurate oscillations, is also obtained. For ?0 = 7°C, the solution becomes nonperiodic. For ?0 ≥ 10°C, chaotic solutions are obtained. In the chaotic regime the prominent oscillations can be divided into two classes. One class includes short-time-scale oscillations, such as the 24-h oscillation, the 22.4-h slightly modified inertial oscillation, and their harmonics. The second class incorporates time scales that are larger than a week, such as 15 days, which is a linear combination of the 24- and 22.4-h oscillations. The flow in the second class is in geostrophic balance. The kinetic energy, which manifests spells of very large energy fluctuations, is examined. During these spells the amplitude of the VLFO is large, and the amplitude of the 24-h oscillation is small compared to the spells where the fluctuations in the kinetic energy are small. Analyses of the wind observations in the central coast of Israel in the summer months show great similarity to the model simulation in the chaotic regime. A VLFO of 10 days, which is prominent in its parallel to the shore component, is interpreted to be the result of the nonlinear interaction between the inertial oscillation at the central latitude of the eastern Mediterranean, 33.5°N, and the 24-h oscillation as obtained in the present model.
    • Download: (800.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Dynamics and Chaos in the Sea and Land Breeze

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4160116
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFeliks, Yizhak
    date accessioned2017-06-09T14:38:55Z
    date available2017-06-09T14:38:55Z
    date copyright2004/09/01
    date issued2004
    identifier issn0022-4928
    identifier otherams-23543.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4160116
    description abstractIn this work the evolution of the sea and land breeze is studied using a nonlinear model under calm synoptic conditions and diurnal periodic forcing of ground temperature. The breeze is examined as a function of the strength of the heating amplitude of ground temperature ?0. For ?0 ≤ 6°C, the solution is quasi-periodic with two incommensurate oscillations of 24 and 22.6 h; the last is the inertial oscillation at latitude 32°N. A very low frequency oscillation (VLFO) of 16 days, which is the linear combination of the two incommensurate oscillations, is also obtained. For ?0 = 7°C, the solution becomes nonperiodic. For ?0 ≥ 10°C, chaotic solutions are obtained. In the chaotic regime the prominent oscillations can be divided into two classes. One class includes short-time-scale oscillations, such as the 24-h oscillation, the 22.4-h slightly modified inertial oscillation, and their harmonics. The second class incorporates time scales that are larger than a week, such as 15 days, which is a linear combination of the 24- and 22.4-h oscillations. The flow in the second class is in geostrophic balance. The kinetic energy, which manifests spells of very large energy fluctuations, is examined. During these spells the amplitude of the VLFO is large, and the amplitude of the 24-h oscillation is small compared to the spells where the fluctuations in the kinetic energy are small. Analyses of the wind observations in the central coast of Israel in the summer months show great similarity to the model simulation in the chaotic regime. A VLFO of 10 days, which is prominent in its parallel to the shore component, is interpreted to be the result of the nonlinear interaction between the inertial oscillation at the central latitude of the eastern Mediterranean, 33.5°N, and the 24-h oscillation as obtained in the present model.
    publisherAmerican Meteorological Society
    titleNonlinear Dynamics and Chaos in the Sea and Land Breeze
    typeJournal Paper
    journal volume61
    journal issue17
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2004)061<2169:NDACIT>2.0.CO;2
    journal fristpage2169
    journal lastpage2187
    treeJournal of the Atmospheric Sciences:;2004:;Volume( 061 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian