YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Low-Frequency Variability in a Baroclinic β Channel with Land–Sea Contrast

    Source: Journal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 018::page 2267
    Author:
    Kravtsov, S.
    ,
    Robertson, A. W.
    ,
    Ghil, M.
    DOI: 10.1175/1520-0469(2003)060<2267:LVIABC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Atmospheric low-frequency variability (LFV) is studied in a two-layer quasigeostrophic model. The model geometry is a periodic ? channel with flat bottom and zonally inhomogeneous thermal forcing. As a result of the idealized land?sea contrast, the model produces a zonally modulated climatological jet with realistic amplitude. The model's LFV is equivalent barotropic; principal component analysis reveals that it consists of (i) dominant stationary patterns with red-noise-like temporal behavior and (ii) propagating waves with periods of 37 and 50 days superimposed on the former. The vorticity forcing due to synoptic eddies is dominated by self-interaction of high-pass filtered model fields. Applying a phase-randomized, stochastic analog of this forcing to a version of the full model in which fast baroclinic instability and, therefore, synoptic eddies are suppressed, produces a climatology and LFV that are very similar to those in the full model. Synoptic eddies are solely represented in the simplified model version by means of stochastic forcing that is independent of the low-frequency flow. It follows that, while fast synoptic eddies are modulated in the full model by the LFV, this modulation is fairly passive: anomalous generation of the synoptic eddies in the course of the full system's low-frequency evolution, the so-called synoptic-eddy feedback, is not essential in selecting the system's low-frequency modes; the main role of synoptic eddies is to supply energy to these modes. Further analysis indicates that the LFV in this thermally driven model originates from the barotropic mode's dynamics. The baroclinic mode passively follows, to first order, the low-frequency changes in the barotropic mode. The latter changes are due to stochastically excited, weakly damped linear eigenmodes of the barotropic-mode equation. Two distinct stationary eigenmodes, as well as two pairs of propagating modes with periods of 27 and 36 days, respectively, dominate the low-frequency behavior. The leading empirical orthogonal functions in this model are associated with these six particular eigenmodes. The latter are not well separated, however, from the other eigenmodes in terms of damping time scale, and it is the barotropic nonlinearity that selects the six dynamically important modes over the others. Interactions between these six modes also result in the occurrence of probability density maxima in two-dimensional subspaces of the model's phase space.
    • Download: (1.811Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Low-Frequency Variability in a Baroclinic β Channel with Land–Sea Contrast

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159877
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKravtsov, S.
    contributor authorRobertson, A. W.
    contributor authorGhil, M.
    date accessioned2017-06-09T14:38:19Z
    date available2017-06-09T14:38:19Z
    date copyright2003/09/01
    date issued2003
    identifier issn0022-4928
    identifier otherams-23328.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159877
    description abstractAtmospheric low-frequency variability (LFV) is studied in a two-layer quasigeostrophic model. The model geometry is a periodic ? channel with flat bottom and zonally inhomogeneous thermal forcing. As a result of the idealized land?sea contrast, the model produces a zonally modulated climatological jet with realistic amplitude. The model's LFV is equivalent barotropic; principal component analysis reveals that it consists of (i) dominant stationary patterns with red-noise-like temporal behavior and (ii) propagating waves with periods of 37 and 50 days superimposed on the former. The vorticity forcing due to synoptic eddies is dominated by self-interaction of high-pass filtered model fields. Applying a phase-randomized, stochastic analog of this forcing to a version of the full model in which fast baroclinic instability and, therefore, synoptic eddies are suppressed, produces a climatology and LFV that are very similar to those in the full model. Synoptic eddies are solely represented in the simplified model version by means of stochastic forcing that is independent of the low-frequency flow. It follows that, while fast synoptic eddies are modulated in the full model by the LFV, this modulation is fairly passive: anomalous generation of the synoptic eddies in the course of the full system's low-frequency evolution, the so-called synoptic-eddy feedback, is not essential in selecting the system's low-frequency modes; the main role of synoptic eddies is to supply energy to these modes. Further analysis indicates that the LFV in this thermally driven model originates from the barotropic mode's dynamics. The baroclinic mode passively follows, to first order, the low-frequency changes in the barotropic mode. The latter changes are due to stochastically excited, weakly damped linear eigenmodes of the barotropic-mode equation. Two distinct stationary eigenmodes, as well as two pairs of propagating modes with periods of 27 and 36 days, respectively, dominate the low-frequency behavior. The leading empirical orthogonal functions in this model are associated with these six particular eigenmodes. The latter are not well separated, however, from the other eigenmodes in terms of damping time scale, and it is the barotropic nonlinearity that selects the six dynamically important modes over the others. Interactions between these six modes also result in the occurrence of probability density maxima in two-dimensional subspaces of the model's phase space.
    publisherAmerican Meteorological Society
    titleLow-Frequency Variability in a Baroclinic β Channel with Land–Sea Contrast
    typeJournal Paper
    journal volume60
    journal issue18
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2003)060<2267:LVIABC>2.0.CO;2
    journal fristpage2267
    journal lastpage2293
    treeJournal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian