YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unsteady Thermally Driven Flows on Gentle Slopes

    Source: Journal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 017::page 2169
    Author:
    Hunt, J. C. R.
    ,
    Fernando, H. J. S.
    ,
    Princevac, M.
    DOI: 10.1175/1520-0469(2003)060<2169:UTDFOG>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The theoretical and laboratory studies on mean velocity and temperature fields of an unsteady atmospheric boundary layer on sloping surfaces reported here were motivated by recent field observations on thermally driven circulation in very wide valleys in the presence of negligible synoptic winds. The upslope (anabatic) flow on a long, shallow, heated (with a buoyancy flux Fbs) slope of inclination α located adjoining a level plane and the effects of cooling of the slope on this flow during the evening transition are studied for the case of a gentle slope for which the length of the sloping plane far exceeds the thickness h of the convective boundary layer. First, a theoretical analysis is presented for the mean upslope flow velocity UM, noting that the turbulence but not the mean flow structure therein is similar to that on a level terrain. The analysis, which is based on mean momentum and heat equations as well as closure involving level-terrain turbulence parameterizations, shows that UM is proportional to α1/3w?, where w? = (Fbsh)1/3. Second, new physical effects associated with evening transition are elicited by considering the idealized case of (specified) cooling the upslope flow on a simple slope. Theory and available field data show that, because of their inertia and although the heating ceases, upslope winds decay only slowly over a period of about 10(h/UM), which is tantamount to several hours on gentle slopes, whereupon flow reversal occurs from upslope to downslope. During this stage, because the air is cooling as it rises up the slope, its potential energy increases, resulting in momentary stagnation of the airflow at a location within a few meters above the surface (in the form of a transition front) followed by local overturning due to convective instabilities; this scenario is consistent with some field observations but has not been observed in mesoscale model simulations because of insufficient resolution to capture the front. A laboratory experiment conducted by subjecting an upslope flow to a rapidly changing surface flux confirmed the theoretical result that flow reversal occurs at a finite distance along the slope with the appearance of a front, which quickly migrates down the slope as the first front of the ensuing katabatic current.
    • Download: (1.010Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unsteady Thermally Driven Flows on Gentle Slopes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159869
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHunt, J. C. R.
    contributor authorFernando, H. J. S.
    contributor authorPrincevac, M.
    date accessioned2017-06-09T14:38:18Z
    date available2017-06-09T14:38:18Z
    date copyright2003/09/01
    date issued2003
    identifier issn0022-4928
    identifier otherams-23320.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159869
    description abstractThe theoretical and laboratory studies on mean velocity and temperature fields of an unsteady atmospheric boundary layer on sloping surfaces reported here were motivated by recent field observations on thermally driven circulation in very wide valleys in the presence of negligible synoptic winds. The upslope (anabatic) flow on a long, shallow, heated (with a buoyancy flux Fbs) slope of inclination α located adjoining a level plane and the effects of cooling of the slope on this flow during the evening transition are studied for the case of a gentle slope for which the length of the sloping plane far exceeds the thickness h of the convective boundary layer. First, a theoretical analysis is presented for the mean upslope flow velocity UM, noting that the turbulence but not the mean flow structure therein is similar to that on a level terrain. The analysis, which is based on mean momentum and heat equations as well as closure involving level-terrain turbulence parameterizations, shows that UM is proportional to α1/3w?, where w? = (Fbsh)1/3. Second, new physical effects associated with evening transition are elicited by considering the idealized case of (specified) cooling the upslope flow on a simple slope. Theory and available field data show that, because of their inertia and although the heating ceases, upslope winds decay only slowly over a period of about 10(h/UM), which is tantamount to several hours on gentle slopes, whereupon flow reversal occurs from upslope to downslope. During this stage, because the air is cooling as it rises up the slope, its potential energy increases, resulting in momentary stagnation of the airflow at a location within a few meters above the surface (in the form of a transition front) followed by local overturning due to convective instabilities; this scenario is consistent with some field observations but has not been observed in mesoscale model simulations because of insufficient resolution to capture the front. A laboratory experiment conducted by subjecting an upslope flow to a rapidly changing surface flux confirmed the theoretical result that flow reversal occurs at a finite distance along the slope with the appearance of a front, which quickly migrates down the slope as the first front of the ensuing katabatic current.
    publisherAmerican Meteorological Society
    titleUnsteady Thermally Driven Flows on Gentle Slopes
    typeJournal Paper
    journal volume60
    journal issue17
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2003)060<2169:UTDFOG>2.0.CO;2
    journal fristpage2169
    journal lastpage2182
    treeJournal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian