YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Generation Mechanisms of Convectively Forced Internal Gravity Waves and Their Propagation to the Stratosphere

    Source: Journal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 016::page 1960
    Author:
    Song, In-Sun
    ,
    Chun, Hye-Yeong
    ,
    Lane, Todd P.
    DOI: 10.1175/1520-0469(2003)060<1960:GMOCFI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Characteristics of gravity waves induced by mesoscale convective storms and the gravity wave sources are investigated using a two-dimensional cloud-resolving numerical model. In a nonlinear moist (control) simulation, the convective system reaches a quasi-steady state after 4 h in which convective cells are periodically regenerated from a gust front updraft. In the convective storms, there are two types of wave forcing: nonlinear forcing in the form of the divergences of momentum and heat flux, and diabatic forcing. The magnitude of the nonlinear source is 2 to 3 times larger than the diabatic source, especially in the upper troposphere. Three quasi-linear dry simulations forced by the wave sources obtained from the control (CTL) simulation are performed to investigate characteristics of gravity waves induced by the various wave source mechanisms. In the three dry simulations, the magnitudes of the perturbations produced in the stratosphere are comparable, yet much larger than those in the CTL simulation. However, the sum of the quasi-linear perturbations generated by the nonlinear and diabatic sources compare well with the mesoscale circulations and gravity waves in the CTL simulation. Through the spectral analysis, it is found that the stratospheric gravity waves in all simulations have similar vertical wavelengths (6.6?9.9 km), horizontal wavelengths (10?100 km), and periods (8?80 min). Also, the magnitudes of gravity waves in the quasi-linear dry simulations are comparable with each other in spite of the differences in the magnitude of the nonlinear and diabatic sources. This is because the vertical propagation condition of linear internal gravity waves, in both the troposphere and stratosphere, restricts wave sources in the horizontal wavenumber (k) and frequency (?) domain, and therefore all of the forcing cannot generate gravity waves that can propagate up to the stratosphere. Compared with the diabatic sources, the nonlinear sources are inefficient in generating linear gravity waves that can propagate vertically into the stratosphere. These results suggest that wave generation mechanisms cannot be accurately understood without examining the vertical propagation condition of the gravity waves. Also, the ?effective? wave sources are of comparable magnitude, yet mostly out of phase. Therefore, although the wave amplitudes produced by simulations with nonlinear forcing and diabatic forcing are about 2 to 3 times too large, their sum compares well to the control simulation.
    • Download: (3.653Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Generation Mechanisms of Convectively Forced Internal Gravity Waves and Their Propagation to the Stratosphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159851
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSong, In-Sun
    contributor authorChun, Hye-Yeong
    contributor authorLane, Todd P.
    date accessioned2017-06-09T14:38:15Z
    date available2017-06-09T14:38:15Z
    date copyright2003/08/01
    date issued2003
    identifier issn0022-4928
    identifier otherams-23304.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159851
    description abstractCharacteristics of gravity waves induced by mesoscale convective storms and the gravity wave sources are investigated using a two-dimensional cloud-resolving numerical model. In a nonlinear moist (control) simulation, the convective system reaches a quasi-steady state after 4 h in which convective cells are periodically regenerated from a gust front updraft. In the convective storms, there are two types of wave forcing: nonlinear forcing in the form of the divergences of momentum and heat flux, and diabatic forcing. The magnitude of the nonlinear source is 2 to 3 times larger than the diabatic source, especially in the upper troposphere. Three quasi-linear dry simulations forced by the wave sources obtained from the control (CTL) simulation are performed to investigate characteristics of gravity waves induced by the various wave source mechanisms. In the three dry simulations, the magnitudes of the perturbations produced in the stratosphere are comparable, yet much larger than those in the CTL simulation. However, the sum of the quasi-linear perturbations generated by the nonlinear and diabatic sources compare well with the mesoscale circulations and gravity waves in the CTL simulation. Through the spectral analysis, it is found that the stratospheric gravity waves in all simulations have similar vertical wavelengths (6.6?9.9 km), horizontal wavelengths (10?100 km), and periods (8?80 min). Also, the magnitudes of gravity waves in the quasi-linear dry simulations are comparable with each other in spite of the differences in the magnitude of the nonlinear and diabatic sources. This is because the vertical propagation condition of linear internal gravity waves, in both the troposphere and stratosphere, restricts wave sources in the horizontal wavenumber (k) and frequency (?) domain, and therefore all of the forcing cannot generate gravity waves that can propagate up to the stratosphere. Compared with the diabatic sources, the nonlinear sources are inefficient in generating linear gravity waves that can propagate vertically into the stratosphere. These results suggest that wave generation mechanisms cannot be accurately understood without examining the vertical propagation condition of the gravity waves. Also, the ?effective? wave sources are of comparable magnitude, yet mostly out of phase. Therefore, although the wave amplitudes produced by simulations with nonlinear forcing and diabatic forcing are about 2 to 3 times too large, their sum compares well to the control simulation.
    publisherAmerican Meteorological Society
    titleGeneration Mechanisms of Convectively Forced Internal Gravity Waves and Their Propagation to the Stratosphere
    typeJournal Paper
    journal volume60
    journal issue16
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2003)060<1960:GMOCFI>2.0.CO;2
    journal fristpage1960
    journal lastpage1980
    treeJournal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian