YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparison of Breeding and Ensemble Transform Kalman Filter Ensemble Forecast Schemes

    Source: Journal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 009::page 1140
    Author:
    Wang, Xuguang
    ,
    Bishop, Craig H.
    DOI: 10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The ensemble transform Kalman filter (ETKF) ensemble forecast scheme is introduced and compared with both a simple and a masked breeding scheme. Instead of directly multiplying each forecast perturbation with a constant or regional rescaling factor as in the simple form of breeding and the masked breeding schemes, the ETKF transforms forecast perturbations into analysis perturbations by multiplying by a transformation matrix. This matrix is chosen to ensure that the ensemble-based analysis error covariance matrix would be equal to the true analysis error covariance if the covariance matrix of the raw forecast perturbations were equal to the true forecast error covariance matrix and the data assimilation scheme were optimal. For small ensembles (?100), the computational expense of the ETKF ensemble generation is only slightly greater than that of the masked breeding scheme. Version 3 of the Community Climate Model (CCM3) developed at National Center for Atmospheric Research (NCAR) is used to test and compare these ensemble generation schemes. The NCEP?NCAR reanalysis data for the boreal summer in 2000 are used for the initialization of the control forecast and the verifications of the ensemble forecasts. The ETKF and masked breeding ensemble variances at the analysis time show reasonable correspondences between variance and observational density. Examination of eigenvalue spectra of ensemble covariance matrices demonstrates that while the ETKF maintains comparable amounts of variance in all orthogonal and uncorrelated directions spanning its ensemble perturbation subspace, both breeding techniques maintain variance in few directions. The growth of the linear combination of ensemble perturbations that maximizes energy growth is computed for each of the ensemble subspaces. The ETKF maximal amplification is found to significantly exceed that of the breeding techniques. The ETKF ensemble mean has lower root-mean-square errors than the mean of the breeding ensemble. New methods to measure the precision of the ensemble-estimated forecast error variance are presented. All of the methods indicate that the ETKF estimates of forecast error variance are considerably more accurate than those of the breeding techniques.
    • Download: (1.258Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparison of Breeding and Ensemble Transform Kalman Filter Ensemble Forecast Schemes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159829
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorWang, Xuguang
    contributor authorBishop, Craig H.
    date accessioned2017-06-09T14:38:12Z
    date available2017-06-09T14:38:12Z
    date copyright2003/05/01
    date issued2003
    identifier issn0022-4928
    identifier otherams-23285.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159829
    description abstractThe ensemble transform Kalman filter (ETKF) ensemble forecast scheme is introduced and compared with both a simple and a masked breeding scheme. Instead of directly multiplying each forecast perturbation with a constant or regional rescaling factor as in the simple form of breeding and the masked breeding schemes, the ETKF transforms forecast perturbations into analysis perturbations by multiplying by a transformation matrix. This matrix is chosen to ensure that the ensemble-based analysis error covariance matrix would be equal to the true analysis error covariance if the covariance matrix of the raw forecast perturbations were equal to the true forecast error covariance matrix and the data assimilation scheme were optimal. For small ensembles (?100), the computational expense of the ETKF ensemble generation is only slightly greater than that of the masked breeding scheme. Version 3 of the Community Climate Model (CCM3) developed at National Center for Atmospheric Research (NCAR) is used to test and compare these ensemble generation schemes. The NCEP?NCAR reanalysis data for the boreal summer in 2000 are used for the initialization of the control forecast and the verifications of the ensemble forecasts. The ETKF and masked breeding ensemble variances at the analysis time show reasonable correspondences between variance and observational density. Examination of eigenvalue spectra of ensemble covariance matrices demonstrates that while the ETKF maintains comparable amounts of variance in all orthogonal and uncorrelated directions spanning its ensemble perturbation subspace, both breeding techniques maintain variance in few directions. The growth of the linear combination of ensemble perturbations that maximizes energy growth is computed for each of the ensemble subspaces. The ETKF maximal amplification is found to significantly exceed that of the breeding techniques. The ETKF ensemble mean has lower root-mean-square errors than the mean of the breeding ensemble. New methods to measure the precision of the ensemble-estimated forecast error variance are presented. All of the methods indicate that the ETKF estimates of forecast error variance are considerably more accurate than those of the breeding techniques.
    publisherAmerican Meteorological Society
    titleA Comparison of Breeding and Ensemble Transform Kalman Filter Ensemble Forecast Schemes
    typeJournal Paper
    journal volume60
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
    journal fristpage1140
    journal lastpage1158
    treeJournal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian