YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Anatomy of a Continental Tropical Convective Storm

    Source: Journal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 001::page 3
    Author:
    Atlas, David
    ,
    Williams, Christopher R.
    DOI: 10.1175/1520-0469(2003)060<0003:TAOACT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This study provides a very clear picture of the microphysics and flow field in a convective storm in the Rondonia region of Brazil through a synthesis of observations from two unique radars, measurements of the surface drop size distribution (DSD), and particle types and sizes from an aircraft penetration. The primary findings are 1) the growth of rain by the collision?coalescence?breakup (CCB) process to equilibrium drop size distributions entirely below the 0°C level; 2) the subsequent growth of larger ice particles (graupel and hail) at subfreezing temperatures; 3) the paucity of lightning activity during the former process, and the increased lightning frequency during the latter; 4) the occurrence of strong downdrafts and a downburst during the latter phase of the storm resulting from cooling by melting and evaporation; 5) the occurrence of turbulence along the main streamlines of the storm; and 6) the confirmation of the large drops reached during the CCB growth by polarimetric radar observations. These interpretations have been made possible by estimating the updraft magnitude using the ?lower bound? of the Doppler spectrum at vertical incidence, and identifying the ?balance level? at which particles are supported for growth. The combination of these methods shows where raindrops are supported for extended periods to allow their growth to equilibrium drop size distributions, while smaller drops ascend and large ones descend. A hypothesis worthy of pursuit is the control of the storm motion by the winds at the balance level, which is the effective precipitation generating level. Above the 0°C level the balance level separates the small ascending ice crystals from the large descending graupel and hail. Collisions between the two cause electrical charging, while gravity and the updrafts separate the charges to cause lightning. Below the 0°C level, large downward velocities (caused by the above-mentioned cooling) in excess of the terminal fall speeds of raindrops represent the downbursts, which are manifested in the surface winds.
    • Download: (946.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Anatomy of a Continental Tropical Convective Storm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159770
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorAtlas, David
    contributor authorWilliams, Christopher R.
    date accessioned2017-06-09T14:38:03Z
    date available2017-06-09T14:38:03Z
    date copyright2003/01/01
    date issued2003
    identifier issn0022-4928
    identifier otherams-23231.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159770
    description abstractThis study provides a very clear picture of the microphysics and flow field in a convective storm in the Rondonia region of Brazil through a synthesis of observations from two unique radars, measurements of the surface drop size distribution (DSD), and particle types and sizes from an aircraft penetration. The primary findings are 1) the growth of rain by the collision?coalescence?breakup (CCB) process to equilibrium drop size distributions entirely below the 0°C level; 2) the subsequent growth of larger ice particles (graupel and hail) at subfreezing temperatures; 3) the paucity of lightning activity during the former process, and the increased lightning frequency during the latter; 4) the occurrence of strong downdrafts and a downburst during the latter phase of the storm resulting from cooling by melting and evaporation; 5) the occurrence of turbulence along the main streamlines of the storm; and 6) the confirmation of the large drops reached during the CCB growth by polarimetric radar observations. These interpretations have been made possible by estimating the updraft magnitude using the ?lower bound? of the Doppler spectrum at vertical incidence, and identifying the ?balance level? at which particles are supported for growth. The combination of these methods shows where raindrops are supported for extended periods to allow their growth to equilibrium drop size distributions, while smaller drops ascend and large ones descend. A hypothesis worthy of pursuit is the control of the storm motion by the winds at the balance level, which is the effective precipitation generating level. Above the 0°C level the balance level separates the small ascending ice crystals from the large descending graupel and hail. Collisions between the two cause electrical charging, while gravity and the updrafts separate the charges to cause lightning. Below the 0°C level, large downward velocities (caused by the above-mentioned cooling) in excess of the terminal fall speeds of raindrops represent the downbursts, which are manifested in the surface winds.
    publisherAmerican Meteorological Society
    titleThe Anatomy of a Continental Tropical Convective Storm
    typeJournal Paper
    journal volume60
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2003)060<0003:TAOACT>2.0.CO;2
    journal fristpage3
    journal lastpage15
    treeJournal of the Atmospheric Sciences:;2003:;Volume( 060 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian