YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap

    Source: Journal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 023::page 3302
    Author:
    Li, J.
    DOI: 10.1175/1520-0469(2002)059<3302:AFUCIA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It is shown that the differences in results between solutions with linear and exponential dependence of the Planck source function are small for typical vertical resolutions in climate models. Second, a new perturbation-based approach to solving the IR radiative transfer equation with the inclusion of cloud scattering is presented. This scheme follows the standard perturbation method, and allows one to identify the zeroth-order equation with the absorption approximation and the first-order equation as including IR scattering effects. This enables one solution to accurately treat cloudy layers in which cloud scattering is included, and allows for an improved and consistent treatment of absorbing aerosol layers in the absence of cloud by using the zeroth-order equation. This new scheme is more simple and efficient compared to previous perturbation method work for treating infrared absorption and scattering. Last, a general method is devised for calculating the random, maximum, and slantwise overlap of cloud layers, which conveniently integrates into the two-stream radiative transfer solution in this work. For several random and maximum (or slantwise) overlap cloud cases with a wide variation of cloud fractions, the error in the cooling rate is generally less than 1 K day?1 and the error in the radiative flux is generally less than 3 W m?2.
    • Download: (1.015Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159752
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLi, J.
    date accessioned2017-06-09T14:38:01Z
    date available2017-06-09T14:38:01Z
    date copyright2002/12/01
    date issued2002
    identifier issn0022-4928
    identifier otherams-23215.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159752
    description abstractVarious aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It is shown that the differences in results between solutions with linear and exponential dependence of the Planck source function are small for typical vertical resolutions in climate models. Second, a new perturbation-based approach to solving the IR radiative transfer equation with the inclusion of cloud scattering is presented. This scheme follows the standard perturbation method, and allows one to identify the zeroth-order equation with the absorption approximation and the first-order equation as including IR scattering effects. This enables one solution to accurately treat cloudy layers in which cloud scattering is included, and allows for an improved and consistent treatment of absorbing aerosol layers in the absence of cloud by using the zeroth-order equation. This new scheme is more simple and efficient compared to previous perturbation method work for treating infrared absorption and scattering. Last, a general method is devised for calculating the random, maximum, and slantwise overlap of cloud layers, which conveniently integrates into the two-stream radiative transfer solution in this work. For several random and maximum (or slantwise) overlap cloud cases with a wide variation of cloud fractions, the error in the cooling rate is generally less than 1 K day?1 and the error in the radiative flux is generally less than 3 W m?2.
    publisherAmerican Meteorological Society
    titleAccounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap
    typeJournal Paper
    journal volume59
    journal issue23
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2002)059<3302:AFUCIA>2.0.CO;2
    journal fristpage3302
    journal lastpage3320
    treeJournal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian