YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interactions between Cloud Microphysics and Cumulus Convection in a General Circulation Model

    Source: Journal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 021::page 3074
    Author:
    Fowler, Laura D.
    ,
    Randall, David A.
    DOI: 10.1175/1520-0469(2002)059<3074:IBCMAC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In the Colorado State University general circulation model, cumulus detrainment of cloud water and cloud ice has been, up to now, the only direct coupling between convective and large-scale condensation processes. This one-way interaction from the convective to the large-scale environment parameterizes, in a highly simplified manner, the growth of anvils spreading horizontally at the tops of narrow cumulus updrafts. The reverse interaction from the large-scale to the convective updrafts, through which large-scale cloud water and cloud ice can affect microphysical processes occurring in individual convective updrafts, is missing. In addition, the effects of compensating subsidence on cloud water and cloud ice are not taken into account. A new parameterization of convection, called ?EAUCUP,? has been developed, in which large-scale water vapor, cloud water, and cloud ice are allowed to enter the sides of the convective updrafts and can be lifted to the tops of the clouds. As the various water species are lifted, cloud microphysical processes take place, removing excess cloud water and cloud ice in the form of rain and snow. The partitioning of condensed vapor between cloud water and cloud ice, and between rain and snow, is based on temperature. The effects of compensating subsidence on the large-scale water vapor, cloud water, and cloud ice are computed separately. Convective rain is assumed to fall instantaneously to the surface. Three treatments of the convective snow are tested: 1) assuming that all snow is detrained at the tops of convective updrafts, 2) assuming that all snow falls outside of the updrafts and may evaporate, and 3) assuming that snow falls entirely inside the updrafts and melts to form rain. Including entrainment of large-scale cloud water and cloud ice inside the updrafts, large-scale compensating subsidence unifies the parameterizations of large-scale cloud microphysics and convection, but have a lesser impact than the treatment of convective snow on the simulated climate. Differences between the three alternate treatments of convective snow are discussed. Emphasis is on the change in the convective, large-scale, and radiative tendencies of temperature, and change in the convective and large-scale tendencies of water vapor, cloud water, cloud ice, and snow. Below the stratiform anvils, the change in latent heating due to the change in both convective and large-scale heatings contributes a major part to the differences in diabatic heating among the three simulations. Above the stratiform anvils, differences in the diabatic heating between the three simulations result primarily because of differences in the longwave radiative cooling. In particular, detraining convective snow at the tops of convective updrafts yields a strong increase in the longwave radiative cooling associated with increased upper-tropospheric cloudiness. The simulated climate is wetter and colder when convective snow is detrained at the tops of the updrafts than when it is detrained on the sides of the updrafts or when it falls entirely inside the updrafts. This result highlights the importance of the treatment of the ice phase and associated precipitation in the convective cloud models used in cumulus parameterizations.
    • Download: (3.782Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interactions between Cloud Microphysics and Cumulus Convection in a General Circulation Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159739
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFowler, Laura D.
    contributor authorRandall, David A.
    date accessioned2017-06-09T14:37:57Z
    date available2017-06-09T14:37:57Z
    date copyright2002/11/01
    date issued2002
    identifier issn0022-4928
    identifier otherams-23203.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159739
    description abstractIn the Colorado State University general circulation model, cumulus detrainment of cloud water and cloud ice has been, up to now, the only direct coupling between convective and large-scale condensation processes. This one-way interaction from the convective to the large-scale environment parameterizes, in a highly simplified manner, the growth of anvils spreading horizontally at the tops of narrow cumulus updrafts. The reverse interaction from the large-scale to the convective updrafts, through which large-scale cloud water and cloud ice can affect microphysical processes occurring in individual convective updrafts, is missing. In addition, the effects of compensating subsidence on cloud water and cloud ice are not taken into account. A new parameterization of convection, called ?EAUCUP,? has been developed, in which large-scale water vapor, cloud water, and cloud ice are allowed to enter the sides of the convective updrafts and can be lifted to the tops of the clouds. As the various water species are lifted, cloud microphysical processes take place, removing excess cloud water and cloud ice in the form of rain and snow. The partitioning of condensed vapor between cloud water and cloud ice, and between rain and snow, is based on temperature. The effects of compensating subsidence on the large-scale water vapor, cloud water, and cloud ice are computed separately. Convective rain is assumed to fall instantaneously to the surface. Three treatments of the convective snow are tested: 1) assuming that all snow is detrained at the tops of convective updrafts, 2) assuming that all snow falls outside of the updrafts and may evaporate, and 3) assuming that snow falls entirely inside the updrafts and melts to form rain. Including entrainment of large-scale cloud water and cloud ice inside the updrafts, large-scale compensating subsidence unifies the parameterizations of large-scale cloud microphysics and convection, but have a lesser impact than the treatment of convective snow on the simulated climate. Differences between the three alternate treatments of convective snow are discussed. Emphasis is on the change in the convective, large-scale, and radiative tendencies of temperature, and change in the convective and large-scale tendencies of water vapor, cloud water, cloud ice, and snow. Below the stratiform anvils, the change in latent heating due to the change in both convective and large-scale heatings contributes a major part to the differences in diabatic heating among the three simulations. Above the stratiform anvils, differences in the diabatic heating between the three simulations result primarily because of differences in the longwave radiative cooling. In particular, detraining convective snow at the tops of convective updrafts yields a strong increase in the longwave radiative cooling associated with increased upper-tropospheric cloudiness. The simulated climate is wetter and colder when convective snow is detrained at the tops of the updrafts than when it is detrained on the sides of the updrafts or when it falls entirely inside the updrafts. This result highlights the importance of the treatment of the ice phase and associated precipitation in the convective cloud models used in cumulus parameterizations.
    publisherAmerican Meteorological Society
    titleInteractions between Cloud Microphysics and Cumulus Convection in a General Circulation Model
    typeJournal Paper
    journal volume59
    journal issue21
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2002)059<3074:IBCMAC>2.0.CO;2
    journal fristpage3074
    journal lastpage3098
    treeJournal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian