YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Surface Model for Cyclone–Anticyclone Asymmetry

    Source: Journal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 016::page 2405
    Author:
    Hakim, Gregory J.
    ,
    Snyder, Chris
    ,
    Muraki, David J.
    DOI: 10.1175/1520-0469(2002)059<2405:ANSMFC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Cyclonic vortices on the tropopause are characterized by compact structure and larger pressure, wind, and temperature perturbations when compared to broader and weaker anticyclones. Neither the origin of these vortices nor the reasons for the preferred asymmetries are completely understood; quasigeostrophic dynamics, in particular, have cyclone?anticyclone symmetry. In order to explore these and related problems, a novel small Rossby number approximation is introduced to the primitive equations applied to a simple model of the tropopause in continuously stratified fluid. This model resolves dynamics that give rise to vortical asymmetries, while retaining both the conceptual simplicity of quasigeostrophic dynamics and the computational economy of two-dimensional flows. The model contains no depth-independent (barotropic) flow, and thus may provide a useful comparison to two-dimensional flows dominated by this flow component. Solutions for random initial conditions (i.e., freely decaying turbulence) exhibit vortical asymmetries typical of tropopause observations, with strong localized cyclones, and weaker diffuse anticyclones. Cyclones cluster around a distinct length scale at a given time, whereas anticyclones do not. These results differ significantly from previous studies of cyclone?anticyclone asymmetry in the shallow-water primitive equations and the periodic balance equations. An important source of asymmetry in the present solutions is divergent flow associated with frontogenesis and the forward cascade of tropopause potential temperature variance. This thermally direct flow changes the mean potential temperature of the tropopause, selectively maintains anticyclonic filaments relative to cyclonic filaments, and appears to promote the merger of anticyclones relative to cyclones.
    • Download: (1.237Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Surface Model for Cyclone–Anticyclone Asymmetry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159689
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHakim, Gregory J.
    contributor authorSnyder, Chris
    contributor authorMuraki, David J.
    date accessioned2017-06-09T14:37:48Z
    date available2017-06-09T14:37:48Z
    date copyright2002/08/01
    date issued2002
    identifier issn0022-4928
    identifier otherams-23159.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159689
    description abstractCyclonic vortices on the tropopause are characterized by compact structure and larger pressure, wind, and temperature perturbations when compared to broader and weaker anticyclones. Neither the origin of these vortices nor the reasons for the preferred asymmetries are completely understood; quasigeostrophic dynamics, in particular, have cyclone?anticyclone symmetry. In order to explore these and related problems, a novel small Rossby number approximation is introduced to the primitive equations applied to a simple model of the tropopause in continuously stratified fluid. This model resolves dynamics that give rise to vortical asymmetries, while retaining both the conceptual simplicity of quasigeostrophic dynamics and the computational economy of two-dimensional flows. The model contains no depth-independent (barotropic) flow, and thus may provide a useful comparison to two-dimensional flows dominated by this flow component. Solutions for random initial conditions (i.e., freely decaying turbulence) exhibit vortical asymmetries typical of tropopause observations, with strong localized cyclones, and weaker diffuse anticyclones. Cyclones cluster around a distinct length scale at a given time, whereas anticyclones do not. These results differ significantly from previous studies of cyclone?anticyclone asymmetry in the shallow-water primitive equations and the periodic balance equations. An important source of asymmetry in the present solutions is divergent flow associated with frontogenesis and the forward cascade of tropopause potential temperature variance. This thermally direct flow changes the mean potential temperature of the tropopause, selectively maintains anticyclonic filaments relative to cyclonic filaments, and appears to promote the merger of anticyclones relative to cyclones.
    publisherAmerican Meteorological Society
    titleA New Surface Model for Cyclone–Anticyclone Asymmetry
    typeJournal Paper
    journal volume59
    journal issue16
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2002)059<2405:ANSMFC>2.0.CO;2
    journal fristpage2405
    journal lastpage2420
    treeJournal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian