YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multichannel Satellite Retrieval of Cloud Parameter Probability Distribution Functions

    Source: Journal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 008::page 1371
    Author:
    McKague, Darren
    ,
    Evans, K. Franklin
    DOI: 10.1175/1520-0469(2002)059<1371:MSROCP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A retrieval method has been developed to directly retrieve statistics of cloud parameters from Geostationary Operational Environmental Satellite (GOES) visible and infrared imager data. This method retrieves cloud parameter probability density functions (PDFs) directly from distributions of multichannel satellite-observed radiances. For example, the joint probability distribution of ice water content and effective radius can be retrieved from a four-dimensional histogram of GOES radiances. A forward radiative transfer model creates a mapping from cloud parameter space to satellite radiance space. The cloud parameter space is described by vertically inhomogeneous liquid and ice cloud layers with variable liquid water path, effective radius, height, and thickness. A Monte Carlo procedure uses the mapping to transform probability density from the observed satellite radiance histogram, or radiance PDF, to a two-dimensional cloud property PDF. An estimate of the uncertainty in the retrieved PDF is calculated from random realizations of the radiance to cloud PDF transformation given the uncertainty of the observed radiances and the nonunique mapping to cloud parameter space. The algorithm is tested with simulations from numerical cloud model output and applied to imagery from the tropical eastern Pacific.
    • Download: (857.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multichannel Satellite Retrieval of Cloud Parameter Probability Distribution Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159614
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMcKague, Darren
    contributor authorEvans, K. Franklin
    date accessioned2017-06-09T14:37:37Z
    date available2017-06-09T14:37:37Z
    date copyright2002/04/01
    date issued2002
    identifier issn0022-4928
    identifier otherams-23091.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159614
    description abstractA retrieval method has been developed to directly retrieve statistics of cloud parameters from Geostationary Operational Environmental Satellite (GOES) visible and infrared imager data. This method retrieves cloud parameter probability density functions (PDFs) directly from distributions of multichannel satellite-observed radiances. For example, the joint probability distribution of ice water content and effective radius can be retrieved from a four-dimensional histogram of GOES radiances. A forward radiative transfer model creates a mapping from cloud parameter space to satellite radiance space. The cloud parameter space is described by vertically inhomogeneous liquid and ice cloud layers with variable liquid water path, effective radius, height, and thickness. A Monte Carlo procedure uses the mapping to transform probability density from the observed satellite radiance histogram, or radiance PDF, to a two-dimensional cloud property PDF. An estimate of the uncertainty in the retrieved PDF is calculated from random realizations of the radiance to cloud PDF transformation given the uncertainty of the observed radiances and the nonunique mapping to cloud parameter space. The algorithm is tested with simulations from numerical cloud model output and applied to imagery from the tropical eastern Pacific.
    publisherAmerican Meteorological Society
    titleMultichannel Satellite Retrieval of Cloud Parameter Probability Distribution Functions
    typeJournal Paper
    journal volume59
    journal issue8
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2002)059<1371:MSROCP>2.0.CO;2
    journal fristpage1371
    journal lastpage1382
    treeJournal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian