YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets

    Source: Journal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 007::page 1213
    Author:
    Wang, Yuqing
    DOI: 10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The asymmetric structure in the inner core of a numerically simulated tropical cyclone is analyzed in this study. The simulated tropical cyclone is found to be highly asymmetric in the inner core. In the mid?lower troposphere, the asymmetry in the core is dominated by azimuthal wavenumber-1 and wavenumber-2 vortex Rossby waves. These waves propagate azimuthally upwind against the azimuthal mean cyclonic tangential flow around the eyewall, and thus have a much longer cyclonic rotation period (by a factor of 2) than the period of a parcel moving with the cyclonic mean tangential flow around the circumference. They also propagate outward against the boundary layer inflow of the azimuthal mean cyclone. The waves are only visible within a radius of about 60 km from the cyclone center. Beyond this distance, the radial gradient of potential vorticity (PV) of the azimuthal mean cyclone is too weak to support the vortex Rossby waves. Although the divergent motion remains strong, the geopotential height and wind fields of the vortex Rossby waves are quasi-balanced, with confluent cyclonic (divergent anticyclonic) flow collocated with low (high) perturbation geopotential height. The waves spiral cyclonically inward with maximum amplitudes near the radius of maximum wind (RMW) in the horizontal and tilt radially outward with height. The upward motion of the waves leads cyclonic vorticity in both azimuthal and radial directions by about one-quarter wavelength, implying that convective heating, which is coupled with low-level convergence and upward motion, is the driving force for the vortex Rossby waves. A PV budget shows that diabatic heating contributes greatly to both the azimuthal mean PV and perturbation PV budgets. The PV tendency associated with diabatic heating is largely balanced by the advective (both horizontal and vertical) flux divergence of the symmetric PV, respectively, due to the asymmetric flow (vortex beta term, similar to the planetary beta term in the large-scale vorticity equation) for the vortex Rossby waves, and due to the symmetric flow for the symmetric cyclone. The vortex Rossby waves transport cyclonic PV from the eyewall to the eye, thus mixing the PV between the eyewall and the eye and spinning up the tangential wind in the eye at the expense of weakening the tangential wind near the RMW. Moreover, the PV tendency due to nonlinear processes associated with the wavenumber-1 vortex Rossby waves is a significant PV source for the wavenumber-2 vortex Rossby waves, indicating a strong wave?wave interaction in the eyewall. An eddy kinetic energy budget indicates that within the RMW, the vortex Rossby waves receive their kinetic energy from the azimuthal mean cyclone through baroclinic conversion and flux divergence of eddy kinetic energy due to the azimuthal mean vortex. Under the eyewall and just outside the RMW in the mid?lower troposphere, the main source for eddy kinetic energy is the eddy potential energy conversion, which is related to the asymmetric diabatic heating associated with moist convection in the eyewall. An interesting finding is that, in both the barotropic and baroclinic conversions, terms related to the radial flow of the azimuthal mean vortex are dominant and contribute to the kinetic energy of the vortex Rossby waves. The horizontal shear of the azimuthal flow of the mean vortex damps eddy kinetic energy, stabilizing the vortex Rossby waves in the mid?lower troposphere. However, both barotropic and baroclinic conversions related to the tangential flow of the azimuthal mean vortex, together with the eddy potential energy conversion, are responsible for the development of asymmetry in the outflow layer.
    • Download: (7.144Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159605
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorWang, Yuqing
    date accessioned2017-06-09T14:37:35Z
    date available2017-06-09T14:37:35Z
    date copyright2002/04/01
    date issued2002
    identifier issn0022-4928
    identifier otherams-23083.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159605
    description abstractThe asymmetric structure in the inner core of a numerically simulated tropical cyclone is analyzed in this study. The simulated tropical cyclone is found to be highly asymmetric in the inner core. In the mid?lower troposphere, the asymmetry in the core is dominated by azimuthal wavenumber-1 and wavenumber-2 vortex Rossby waves. These waves propagate azimuthally upwind against the azimuthal mean cyclonic tangential flow around the eyewall, and thus have a much longer cyclonic rotation period (by a factor of 2) than the period of a parcel moving with the cyclonic mean tangential flow around the circumference. They also propagate outward against the boundary layer inflow of the azimuthal mean cyclone. The waves are only visible within a radius of about 60 km from the cyclone center. Beyond this distance, the radial gradient of potential vorticity (PV) of the azimuthal mean cyclone is too weak to support the vortex Rossby waves. Although the divergent motion remains strong, the geopotential height and wind fields of the vortex Rossby waves are quasi-balanced, with confluent cyclonic (divergent anticyclonic) flow collocated with low (high) perturbation geopotential height. The waves spiral cyclonically inward with maximum amplitudes near the radius of maximum wind (RMW) in the horizontal and tilt radially outward with height. The upward motion of the waves leads cyclonic vorticity in both azimuthal and radial directions by about one-quarter wavelength, implying that convective heating, which is coupled with low-level convergence and upward motion, is the driving force for the vortex Rossby waves. A PV budget shows that diabatic heating contributes greatly to both the azimuthal mean PV and perturbation PV budgets. The PV tendency associated with diabatic heating is largely balanced by the advective (both horizontal and vertical) flux divergence of the symmetric PV, respectively, due to the asymmetric flow (vortex beta term, similar to the planetary beta term in the large-scale vorticity equation) for the vortex Rossby waves, and due to the symmetric flow for the symmetric cyclone. The vortex Rossby waves transport cyclonic PV from the eyewall to the eye, thus mixing the PV between the eyewall and the eye and spinning up the tangential wind in the eye at the expense of weakening the tangential wind near the RMW. Moreover, the PV tendency due to nonlinear processes associated with the wavenumber-1 vortex Rossby waves is a significant PV source for the wavenumber-2 vortex Rossby waves, indicating a strong wave?wave interaction in the eyewall. An eddy kinetic energy budget indicates that within the RMW, the vortex Rossby waves receive their kinetic energy from the azimuthal mean cyclone through baroclinic conversion and flux divergence of eddy kinetic energy due to the azimuthal mean vortex. Under the eyewall and just outside the RMW in the mid?lower troposphere, the main source for eddy kinetic energy is the eddy potential energy conversion, which is related to the asymmetric diabatic heating associated with moist convection in the eyewall. An interesting finding is that, in both the barotropic and baroclinic conversions, terms related to the radial flow of the azimuthal mean vortex are dominant and contribute to the kinetic energy of the vortex Rossby waves. The horizontal shear of the azimuthal flow of the mean vortex damps eddy kinetic energy, stabilizing the vortex Rossby waves in the mid?lower troposphere. However, both barotropic and baroclinic conversions related to the tangential flow of the azimuthal mean vortex, together with the eddy potential energy conversion, are responsible for the development of asymmetry in the outflow layer.
    publisherAmerican Meteorological Society
    titleVortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets
    typeJournal Paper
    journal volume59
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2002)059<1213:VRWIAN>2.0.CO;2
    journal fristpage1213
    journal lastpage1238
    treeJournal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian