YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model Assessment of the Ability of MODIS to Measure Top-of-Atmosphere Direct Radiative Forcing from Smoke Aerosols

    Source: Journal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 003::page 657
    Author:
    Remer, Lorraine A.
    ,
    Kaufman, Yoram J.
    ,
    Levin, Zev
    ,
    Ghan, Steven
    DOI: 10.1175/1520-0469(2002)059<0657:MAOTAO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The new generation of satellite sensors such as the moderate resolution imaging spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in estimates of aerosol radiative forcing at the top of the atmosphere. The discussion is narrowed to cloud-free direct forcing. Satellite remote sensing detects aerosol with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. The monthly mean results of two global aerosol transport models are used to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87%?94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal-to-noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties, and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.2 to 2.2 W m?2 (16%?60%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. Residual cloud contamination uncertainty is not included in these estimates. Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.
    • Download: (224.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model Assessment of the Ability of MODIS to Measure Top-of-Atmosphere Direct Radiative Forcing from Smoke Aerosols

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159564
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorRemer, Lorraine A.
    contributor authorKaufman, Yoram J.
    contributor authorLevin, Zev
    contributor authorGhan, Steven
    date accessioned2017-06-09T14:37:29Z
    date available2017-06-09T14:37:29Z
    date copyright2002/02/01
    date issued2002
    identifier issn0022-4928
    identifier otherams-23046.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159564
    description abstractThe new generation of satellite sensors such as the moderate resolution imaging spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in estimates of aerosol radiative forcing at the top of the atmosphere. The discussion is narrowed to cloud-free direct forcing. Satellite remote sensing detects aerosol with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. The monthly mean results of two global aerosol transport models are used to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87%?94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal-to-noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties, and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.2 to 2.2 W m?2 (16%?60%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. Residual cloud contamination uncertainty is not included in these estimates. Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.
    publisherAmerican Meteorological Society
    titleModel Assessment of the Ability of MODIS to Measure Top-of-Atmosphere Direct Radiative Forcing from Smoke Aerosols
    typeJournal Paper
    journal volume59
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2002)059<0657:MAOTAO>2.0.CO;2
    journal fristpage657
    journal lastpage667
    treeJournal of the Atmospheric Sciences:;2002:;Volume( 059 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian