YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra

    Source: Journal of Atmospheric and Oceanic Technology:;2004:;volume( 021 ):;issue: 004::page 660
    Author:
    Shupe, Matthew D.
    ,
    Kollias, Pavlos
    ,
    Matrosov, Sergey Y.
    ,
    Schneider, Timothy L.
    DOI: 10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In certain circumstances, millimeter-wavelength Doppler radar velocity spectra can be used to estimate the microphysical composition of both phases of mixed-phase clouds. This distinction is possible when the cloud properties are such that they produce a bimodal Doppler velocity spectrum. Under these conditions, the Doppler spectrum moments of the distinct liquid and ice spectral modes may be computed independently and used to quantitatively derive properties of the liquid droplet and ice particle size distributions. Additionally, the cloud liquid spectral mode, which is a tracer for clear-air motions, can be used to estimate the vertical air motion and to correct estimates of ice particle fall speeds. A mixed-phase cloud case study from the NASA Cirrus Regional Study of Tropical Anvils and Cloud Layers- Florida Area Cirrus Experiment (CRYSTAL-FACE) is used to illustrate this new retrieval approach. The case of interest occurred on 29 July 2002 when a supercooled liquid cloud layer based at 5 km AGL and precipitating ice crystals advected over a ground measurement site. Ground-based measurements from both 35- and 94-GHz radars revealed clear bimodal Doppler velocity spectra within this cloud layer. Profiles of radar reflectivity were computed independently from the liquid and ice spectral modes of the velocity spectra. Empirical reflectivity- based relationships were then used to derive profiles of both liquid and ice microphysical parameters, such as water content and particle size. Although the ice crystals extended down to a height of 4 km, the radar measurements were able to distinguish the base of the cloud liquid at 5 km, in good agreement with cloud-base measurements from a collocated micropulse lidar. Furthermore, radar-derived cloud liquid water paths were in good agreement with liquid water paths derived from a collocated microwave radiometer. Results presented here demonstrate the ability of the radar to both identify and quantify the presence of both phases in some mixed-phase clouds. They also demonstrate that, in terms of radar reflectivity, the ice component of mixed-phase clouds typically dominates the radar signal, while in terms of mean Doppler velocity, the liquid component can make a significant contribution. The high temporal resolution, 94-GHz Doppler radar observations were able to reveal a periodic cloud-top updraft that, combined with horizontal wind speeds, suggests a horizontal scale for the in-cloud circulations.
    • Download: (412.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159489
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorShupe, Matthew D.
    contributor authorKollias, Pavlos
    contributor authorMatrosov, Sergey Y.
    contributor authorSchneider, Timothy L.
    date accessioned2017-06-09T14:37:16Z
    date available2017-06-09T14:37:16Z
    date copyright2004/04/01
    date issued2004
    identifier issn0739-0572
    identifier otherams-2298.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159489
    description abstractIn certain circumstances, millimeter-wavelength Doppler radar velocity spectra can be used to estimate the microphysical composition of both phases of mixed-phase clouds. This distinction is possible when the cloud properties are such that they produce a bimodal Doppler velocity spectrum. Under these conditions, the Doppler spectrum moments of the distinct liquid and ice spectral modes may be computed independently and used to quantitatively derive properties of the liquid droplet and ice particle size distributions. Additionally, the cloud liquid spectral mode, which is a tracer for clear-air motions, can be used to estimate the vertical air motion and to correct estimates of ice particle fall speeds. A mixed-phase cloud case study from the NASA Cirrus Regional Study of Tropical Anvils and Cloud Layers- Florida Area Cirrus Experiment (CRYSTAL-FACE) is used to illustrate this new retrieval approach. The case of interest occurred on 29 July 2002 when a supercooled liquid cloud layer based at 5 km AGL and precipitating ice crystals advected over a ground measurement site. Ground-based measurements from both 35- and 94-GHz radars revealed clear bimodal Doppler velocity spectra within this cloud layer. Profiles of radar reflectivity were computed independently from the liquid and ice spectral modes of the velocity spectra. Empirical reflectivity- based relationships were then used to derive profiles of both liquid and ice microphysical parameters, such as water content and particle size. Although the ice crystals extended down to a height of 4 km, the radar measurements were able to distinguish the base of the cloud liquid at 5 km, in good agreement with cloud-base measurements from a collocated micropulse lidar. Furthermore, radar-derived cloud liquid water paths were in good agreement with liquid water paths derived from a collocated microwave radiometer. Results presented here demonstrate the ability of the radar to both identify and quantify the presence of both phases in some mixed-phase clouds. They also demonstrate that, in terms of radar reflectivity, the ice component of mixed-phase clouds typically dominates the radar signal, while in terms of mean Doppler velocity, the liquid component can make a significant contribution. The high temporal resolution, 94-GHz Doppler radar observations were able to reveal a periodic cloud-top updraft that, combined with horizontal wind speeds, suggests a horizontal scale for the in-cloud circulations.
    publisherAmerican Meteorological Society
    titleDeriving Mixed-Phase Cloud Properties from Doppler Radar Spectra
    typeJournal Paper
    journal volume21
    journal issue4
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2
    journal fristpage660
    journal lastpage670
    treeJournal of Atmospheric and Oceanic Technology:;2004:;volume( 021 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian