YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameterization of Generalized Cloud Overlap for Radiative Calculations in General Circulation Models

    Source: Journal of the Atmospheric Sciences:;2001:;Volume( 058 ):;issue: 021::page 3224
    Author:
    Collins, William D.
    DOI: 10.1175/1520-0469(2001)058<3224:POGCOF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: New radiative parameterizations have been developed for the National Center for Atmospheric Research (NCAR) Community Atmospheric Model (CAM). The CAM is the next version of the NCAR Community Climate Model (CCM). This paper describes the generalized treatment of vertical cloud overlap in the radiative calculations. The new parameterizations compute the shortwave and longwave fluxes and heating rates for random overlap, maximum overlap, or an arbitrary combination of maximum and random overlap. The specification of the type of overlap is identical for the two bands, and it is completely separated from the radiative parameterizations. In the prototype of CAM (CAM 0.1), adjacent cloud layers are maximally overlapped and groups of clouds separated by cloud-free layers are randomly overlapped. The introduction of the generalized overlap assumptions permits more realistic treatments of cloud?radiative interactions. The parameterizations are based upon representations of the radiative transfer equations that are more accurate than previous approximations. These techniques increase the computational cost of the radiative calculations by approximately 30%. The methodology has been designed and validated against calculations based upon the independent pixel approximation (IPA). The solution techniques and validation procedure are described in detail. The hourly radiative fluxes and heating rates from the parameterizations and IPA have been compared for a 1-yr integration of CAM. The mean and rms errors in the hourly longwave top of the atmosphere (TOA) fluxes are ?0.006 ± 0.066 W m?2, and the corresponding errors in the shortwave TOA fluxes are ?0.20 ± 1.58 W m?2. Heating rate errors are O(10?3) K day?1. In switching from random to maximum/random overlap, the largest changes in TOA shortwave fluxes occur over tropical continental areas, and the largest changes in TOA longwave fluxes occur in tropical convective regions. The effects on global climate are determined largely by the instantaneous changes in the fluxes rather than feedbacks related to cloud overlap.
    • Download: (1017.Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameterization of Generalized Cloud Overlap for Radiative Calculations in General Circulation Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159466
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorCollins, William D.
    date accessioned2017-06-09T14:37:12Z
    date available2017-06-09T14:37:12Z
    date copyright2001/11/01
    date issued2001
    identifier issn0022-4928
    identifier otherams-22959.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159466
    description abstractNew radiative parameterizations have been developed for the National Center for Atmospheric Research (NCAR) Community Atmospheric Model (CAM). The CAM is the next version of the NCAR Community Climate Model (CCM). This paper describes the generalized treatment of vertical cloud overlap in the radiative calculations. The new parameterizations compute the shortwave and longwave fluxes and heating rates for random overlap, maximum overlap, or an arbitrary combination of maximum and random overlap. The specification of the type of overlap is identical for the two bands, and it is completely separated from the radiative parameterizations. In the prototype of CAM (CAM 0.1), adjacent cloud layers are maximally overlapped and groups of clouds separated by cloud-free layers are randomly overlapped. The introduction of the generalized overlap assumptions permits more realistic treatments of cloud?radiative interactions. The parameterizations are based upon representations of the radiative transfer equations that are more accurate than previous approximations. These techniques increase the computational cost of the radiative calculations by approximately 30%. The methodology has been designed and validated against calculations based upon the independent pixel approximation (IPA). The solution techniques and validation procedure are described in detail. The hourly radiative fluxes and heating rates from the parameterizations and IPA have been compared for a 1-yr integration of CAM. The mean and rms errors in the hourly longwave top of the atmosphere (TOA) fluxes are ?0.006 ± 0.066 W m?2, and the corresponding errors in the shortwave TOA fluxes are ?0.20 ± 1.58 W m?2. Heating rate errors are O(10?3) K day?1. In switching from random to maximum/random overlap, the largest changes in TOA shortwave fluxes occur over tropical continental areas, and the largest changes in TOA longwave fluxes occur in tropical convective regions. The effects on global climate are determined largely by the instantaneous changes in the fluxes rather than feedbacks related to cloud overlap.
    publisherAmerican Meteorological Society
    titleParameterization of Generalized Cloud Overlap for Radiative Calculations in General Circulation Models
    typeJournal Paper
    journal volume58
    journal issue21
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2001)058<3224:POGCOF>2.0.CO;2
    journal fristpage3224
    journal lastpage3242
    treeJournal of the Atmospheric Sciences:;2001:;Volume( 058 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian