YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Alignment and Corotation of Weak, TC-like Vortices via Linear Vortex Rossby Waves

    Source: Journal of the Atmospheric Sciences:;2001:;Volume( 058 ):;issue: 016::page 2306
    Author:
    Reasor, Paul D.
    ,
    Montgomery, Michael T.
    DOI: 10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The vertical alignment of an initially tilted geostrophic vortex is shown here to be captured by linear vortex Rossby wave dynamics when the vortex cores at upper and lower levels overlap. The vortex beta Rossby number, defined as the ratio of nonlinear advection in the potential vorticity equation to linear radial advection, is less than unity in this case. A useful means of characterizing a tilted vortex flow in this parameter regime is through a wave?mean flow decomposition. From this perspective the alignment mechanism is elucidated using a quasigeostrophic model in both its complete and linear equivalent barotropic forms. Attention is focused on basic-state vortices with continuous and monotonically decreasing potential vorticity profiles. For internal Rossby deformation radii larger than the horizontal scale of the tilted vortex an azimuthal wavenumber 1 quasi mode exists. The quasi mode is characterized by its steady cyclonic propagation, long lifetime, and resistance to differential rotation, behaving much like a discrete vortex Rossby wave. The quasi mode traps disturbance energy causing the vortex to precess, or corotate, and thus prevents alignment. For internal deformation radii smaller than the horizontal vortex scale, the quasi mode disappears into the continuous spectrum of vortex Rossby waves. Alignment then proceeds through the irreversible redistribution of potential vorticity by the sheared vortex Rossby waves. Further decreases in the internal deformation radius result in a decreased dependence of vortex evolution on initial tilt magnitude, consistent with a reduction of the vortex beta Rossby number. These results are believed to have relevance to the problem of tropical cyclone (TC) genesis. Cyclogenesis initiated through the merger and alignment of low-level convectively generated positive potential vorticity within a weak incipient vortex is captured by quasi-linear dynamics. A potential dynamical barrier to TC development in which the quasi mode frustrates vertical alignment can be identified using the linear alignment theory in this case.
    • Download: (3.658Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Alignment and Corotation of Weak, TC-like Vortices via Linear Vortex Rossby Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159407
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorReasor, Paul D.
    contributor authorMontgomery, Michael T.
    date accessioned2017-06-09T14:37:03Z
    date available2017-06-09T14:37:03Z
    date copyright2001/08/01
    date issued2001
    identifier issn0022-4928
    identifier otherams-22905.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159407
    description abstractThe vertical alignment of an initially tilted geostrophic vortex is shown here to be captured by linear vortex Rossby wave dynamics when the vortex cores at upper and lower levels overlap. The vortex beta Rossby number, defined as the ratio of nonlinear advection in the potential vorticity equation to linear radial advection, is less than unity in this case. A useful means of characterizing a tilted vortex flow in this parameter regime is through a wave?mean flow decomposition. From this perspective the alignment mechanism is elucidated using a quasigeostrophic model in both its complete and linear equivalent barotropic forms. Attention is focused on basic-state vortices with continuous and monotonically decreasing potential vorticity profiles. For internal Rossby deformation radii larger than the horizontal scale of the tilted vortex an azimuthal wavenumber 1 quasi mode exists. The quasi mode is characterized by its steady cyclonic propagation, long lifetime, and resistance to differential rotation, behaving much like a discrete vortex Rossby wave. The quasi mode traps disturbance energy causing the vortex to precess, or corotate, and thus prevents alignment. For internal deformation radii smaller than the horizontal vortex scale, the quasi mode disappears into the continuous spectrum of vortex Rossby waves. Alignment then proceeds through the irreversible redistribution of potential vorticity by the sheared vortex Rossby waves. Further decreases in the internal deformation radius result in a decreased dependence of vortex evolution on initial tilt magnitude, consistent with a reduction of the vortex beta Rossby number. These results are believed to have relevance to the problem of tropical cyclone (TC) genesis. Cyclogenesis initiated through the merger and alignment of low-level convectively generated positive potential vorticity within a weak incipient vortex is captured by quasi-linear dynamics. A potential dynamical barrier to TC development in which the quasi mode frustrates vertical alignment can be identified using the linear alignment theory in this case.
    publisherAmerican Meteorological Society
    titleThree-Dimensional Alignment and Corotation of Weak, TC-like Vortices via Linear Vortex Rossby Waves
    typeJournal Paper
    journal volume58
    journal issue16
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2
    journal fristpage2306
    journal lastpage2330
    treeJournal of the Atmospheric Sciences:;2001:;Volume( 058 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian