YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparison of Convergence- and Surface-Flux-Based Convective Parameterizations with Applications to Tropical Cyclogenesis

    Source: Journal of the Atmospheric Sciences:;2001:;Volume( 058 ):;issue: 003::page 283
    Author:
    Zehnder, Joseph A.
    DOI: 10.1175/1520-0469(2001)058<0283:ACOCAS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The evolutions of radially symmetric vortices and idealized easterly waves are compared using three simple convective parameterization schemes. The parameterizations are formulated for a model atmosphere consisting of three coupled, shallow, constant-density layers. The first was developed by Ooyama and later refined by DeMaria and Pickle (the ODP scheme). Their scheme uses horizontal convergence in the boundary layer to define a vertical mass flux, along with a closure relation based on conservation of moist static energy that determines the vertical redistribution of mass. The second scheme is a modification of the ODP scheme in that convection is allowed to stabilize the profile. A third scheme has the convective mass flux from the boundary layer determined by the assumption that convective up- and downdrafts keep the equivalent potential temperature of the boundary layer in near equilibrium (the BLQ scheme). For vortices that are initially radially symmetric, the ODP scheme produces a hurricane-like vortex, provided that the middle atmosphere is sufficiently moist. However, the intensification is slow unless an unrealistically weak density stratification is used. For the modified ODP scheme, the vortex intensifies on a shorter timescale in an atmosphere with a realistic stratification, regardless of the midlevel moisture profile. After the intensification, convective transport of air with high equivalent potential temperature stabilizes the profile, and the vortex begins to decay. For the BLQ scheme, the vortex will intensify, provided that the middle atmosphere is sufficiently moist and after the atmosphere has been conditioned for deep convection by the shallow convection. For the idealized easterly waves, the development between the schemes is quite different. Only the BLQ scheme allows convection to condition the atmosphere for further deep convection, which results in a developing disturbance.
    • Download: (297.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparison of Convergence- and Surface-Flux-Based Convective Parameterizations with Applications to Tropical Cyclogenesis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159259
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorZehnder, Joseph A.
    date accessioned2017-06-09T14:36:41Z
    date available2017-06-09T14:36:41Z
    date copyright2001/02/01
    date issued2001
    identifier issn0022-4928
    identifier otherams-22772.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159259
    description abstractThe evolutions of radially symmetric vortices and idealized easterly waves are compared using three simple convective parameterization schemes. The parameterizations are formulated for a model atmosphere consisting of three coupled, shallow, constant-density layers. The first was developed by Ooyama and later refined by DeMaria and Pickle (the ODP scheme). Their scheme uses horizontal convergence in the boundary layer to define a vertical mass flux, along with a closure relation based on conservation of moist static energy that determines the vertical redistribution of mass. The second scheme is a modification of the ODP scheme in that convection is allowed to stabilize the profile. A third scheme has the convective mass flux from the boundary layer determined by the assumption that convective up- and downdrafts keep the equivalent potential temperature of the boundary layer in near equilibrium (the BLQ scheme). For vortices that are initially radially symmetric, the ODP scheme produces a hurricane-like vortex, provided that the middle atmosphere is sufficiently moist. However, the intensification is slow unless an unrealistically weak density stratification is used. For the modified ODP scheme, the vortex intensifies on a shorter timescale in an atmosphere with a realistic stratification, regardless of the midlevel moisture profile. After the intensification, convective transport of air with high equivalent potential temperature stabilizes the profile, and the vortex begins to decay. For the BLQ scheme, the vortex will intensify, provided that the middle atmosphere is sufficiently moist and after the atmosphere has been conditioned for deep convection by the shallow convection. For the idealized easterly waves, the development between the schemes is quite different. Only the BLQ scheme allows convection to condition the atmosphere for further deep convection, which results in a developing disturbance.
    publisherAmerican Meteorological Society
    titleA Comparison of Convergence- and Surface-Flux-Based Convective Parameterizations with Applications to Tropical Cyclogenesis
    typeJournal Paper
    journal volume58
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2001)058<0283:ACOCAS>2.0.CO;2
    journal fristpage283
    journal lastpage301
    treeJournal of the Atmospheric Sciences:;2001:;Volume( 058 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian