YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Amazon Energy Budget Using the ABLE-2B and FluAmazon Data

    Source: Journal of the Atmospheric Sciences:;2000:;Volume( 057 ):;issue: 018::page 3131
    Author:
    Machado, Luiz A. T.
    DOI: 10.1175/1520-0469(2000)057<3131:TAEBUT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Radiosonde and satellite data collected from the Atmosphere Boundary Layer Experiment?Wet Season and Amazon Water Vapor Flux Experiment are used to investigate the energy budget. The relationship between the cloud cover variability and the different terms of the energy budget equations was examined. The radiosonde data were used to compute the energy divergence flux for each triangle composed by three radiosonde stations. Earth Radiation Budget Experiment data were used to compute the radiative flux in the top of the atmosphere. The cloud cover variability were computed from the International Satellite Cloud Climatology Project data. When the atmosphere undergoes a change from the mean state to the convective state, it stores energy mainly in the middle layers, while the maximum energy storage was found around 650 hPa mainly due to the perturbation of the latent energy. Conversely, when the atmosphere undergoes a change from a mean state to a nearly clear sky situation, the atmosphere column loses energy, principally due to the changes in the latent energy profile, and the atmosphere became drier, in the 700?200-hPa layer. The advective term of the energy divergence flux is of a lower order and the energy divergence flux is determined mainly from the divergent term. The profiles of the components of the energy divergence flux are essentially a result of the wind divergence weighted by the specific humidity (latent term), temperature (enthalpy term), and height (potential term). The latent energy divergence flux, for convective situations, presents a maximum in 950 hPa and is always negative (convergent) up to 400 hPa. For the nearly clear-sky situation a convergence of humidity in the lower levels and an important humidity divergence above 800 hPa were observed. The enthalpy and the latent energy divergence flux mainly describe the middle/low levels and the potential energy divergence flux represents mainly the upper troposphere. During the experiments, the solar energy absorbed by the surface was always smaller than the total surface flux supplied to the atmosphere during convective events and always larger than the total surface flux supplied to the atmosphere during nonconvective events. This means that the surface loses more energy than it receives in convective events and vice versa. The quantity of energy stored at the surface seems to be limited, defining a timescale, during which the surface needs to export or receive energy to control its deficit or gain of energy.
    • Download: (275.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Amazon Energy Budget Using the ABLE-2B and FluAmazon Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159185
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMachado, Luiz A. T.
    date accessioned2017-06-09T14:36:31Z
    date available2017-06-09T14:36:31Z
    date copyright2000/09/01
    date issued2000
    identifier issn0022-4928
    identifier otherams-22705.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159185
    description abstractRadiosonde and satellite data collected from the Atmosphere Boundary Layer Experiment?Wet Season and Amazon Water Vapor Flux Experiment are used to investigate the energy budget. The relationship between the cloud cover variability and the different terms of the energy budget equations was examined. The radiosonde data were used to compute the energy divergence flux for each triangle composed by three radiosonde stations. Earth Radiation Budget Experiment data were used to compute the radiative flux in the top of the atmosphere. The cloud cover variability were computed from the International Satellite Cloud Climatology Project data. When the atmosphere undergoes a change from the mean state to the convective state, it stores energy mainly in the middle layers, while the maximum energy storage was found around 650 hPa mainly due to the perturbation of the latent energy. Conversely, when the atmosphere undergoes a change from a mean state to a nearly clear sky situation, the atmosphere column loses energy, principally due to the changes in the latent energy profile, and the atmosphere became drier, in the 700?200-hPa layer. The advective term of the energy divergence flux is of a lower order and the energy divergence flux is determined mainly from the divergent term. The profiles of the components of the energy divergence flux are essentially a result of the wind divergence weighted by the specific humidity (latent term), temperature (enthalpy term), and height (potential term). The latent energy divergence flux, for convective situations, presents a maximum in 950 hPa and is always negative (convergent) up to 400 hPa. For the nearly clear-sky situation a convergence of humidity in the lower levels and an important humidity divergence above 800 hPa were observed. The enthalpy and the latent energy divergence flux mainly describe the middle/low levels and the potential energy divergence flux represents mainly the upper troposphere. During the experiments, the solar energy absorbed by the surface was always smaller than the total surface flux supplied to the atmosphere during convective events and always larger than the total surface flux supplied to the atmosphere during nonconvective events. This means that the surface loses more energy than it receives in convective events and vice versa. The quantity of energy stored at the surface seems to be limited, defining a timescale, during which the surface needs to export or receive energy to control its deficit or gain of energy.
    publisherAmerican Meteorological Society
    titleThe Amazon Energy Budget Using the ABLE-2B and FluAmazon Data
    typeJournal Paper
    journal volume57
    journal issue18
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2000)057<3131:TAEBUT>2.0.CO;2
    journal fristpage3131
    journal lastpage3144
    treeJournal of the Atmospheric Sciences:;2000:;Volume( 057 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian