YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transport, Moisture, and Rain in a Simple Monsoonlike Flow

    Source: Journal of the Atmospheric Sciences:;2000:;Volume( 057 ):;issue: 011::page 1817
    Author:
    Joseph, Binson
    ,
    Moustaoui, Mohamed
    DOI: 10.1175/1520-0469(2000)057<1817:TMARIA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Lagrangian transport of particles and its role in the redistribution of moisture and rainfall in a monsoonlike flow is investigated using a simple, dynamically consistent model of the heat-induced tropical circulation. The results indicate that the transport, for finite times, is filamentary in monsoonlike flows. Over the monsoon domain in the Northern Hemisphere, with increasing height in the troposphere, the moist filaments become thinner and the rainfall becomes more chaotic and scattered. Thick moist plumes found in the middle troposphere become progressively filamentary as height increases. The lower tropospheric plumes may also be filamentary if strong anticyclones are present at the surface. Larger rainfall patterns produced by ascending motion around the monsoon cyclone are well organized, but scattered rain occurring from higher levels is inherently chaotic. Scattered rainfall occurring from higher tropospheric levels in the Indian monsoon domain are likely to be less predictable. Moisture buildup in the mid- and lower-tropospheric levels over India from the north and northeastern borders during the summer monsoon can be important. Large-scale, three-dimensional laminar advection of moisture around the Asian monsoon cyclone in the lower troposphere can be a significant source of moisture for the subtropical lower troposphere. The filamentary nature of the transport has been evident from the calculations of finite-time Lyapunov exponents and correlation dimensions of dispersing clouds. The authors have noticed that in the Northern Hemisphere subtropics there is a region of strong chaotic mixing at the lower levels during the monsoon period. The relative dispersion process is found to be highly intermittent, with decaying exponential regimes interrupted by sudden shrinking of clouds, possibly in the chaotic tangle of dynamics around hyperbolic points associated with the forced part of the flow or the smaller-scale transient part of the flow. Considering the topology of the forced part and transient Rossby parts, the fact that transport is filamentary, on average, may likely be due to a predominance of chaos around saddle?foci connections existing in the forced part of the flow.
    • Download: (1.019Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transport, Moisture, and Rain in a Simple Monsoonlike Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4159094
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorJoseph, Binson
    contributor authorMoustaoui, Mohamed
    date accessioned2017-06-09T14:36:17Z
    date available2017-06-09T14:36:17Z
    date copyright2000/06/01
    date issued2000
    identifier issn0022-4928
    identifier otherams-22623.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4159094
    description abstractThe Lagrangian transport of particles and its role in the redistribution of moisture and rainfall in a monsoonlike flow is investigated using a simple, dynamically consistent model of the heat-induced tropical circulation. The results indicate that the transport, for finite times, is filamentary in monsoonlike flows. Over the monsoon domain in the Northern Hemisphere, with increasing height in the troposphere, the moist filaments become thinner and the rainfall becomes more chaotic and scattered. Thick moist plumes found in the middle troposphere become progressively filamentary as height increases. The lower tropospheric plumes may also be filamentary if strong anticyclones are present at the surface. Larger rainfall patterns produced by ascending motion around the monsoon cyclone are well organized, but scattered rain occurring from higher levels is inherently chaotic. Scattered rainfall occurring from higher tropospheric levels in the Indian monsoon domain are likely to be less predictable. Moisture buildup in the mid- and lower-tropospheric levels over India from the north and northeastern borders during the summer monsoon can be important. Large-scale, three-dimensional laminar advection of moisture around the Asian monsoon cyclone in the lower troposphere can be a significant source of moisture for the subtropical lower troposphere. The filamentary nature of the transport has been evident from the calculations of finite-time Lyapunov exponents and correlation dimensions of dispersing clouds. The authors have noticed that in the Northern Hemisphere subtropics there is a region of strong chaotic mixing at the lower levels during the monsoon period. The relative dispersion process is found to be highly intermittent, with decaying exponential regimes interrupted by sudden shrinking of clouds, possibly in the chaotic tangle of dynamics around hyperbolic points associated with the forced part of the flow or the smaller-scale transient part of the flow. Considering the topology of the forced part and transient Rossby parts, the fact that transport is filamentary, on average, may likely be due to a predominance of chaos around saddle?foci connections existing in the forced part of the flow.
    publisherAmerican Meteorological Society
    titleTransport, Moisture, and Rain in a Simple Monsoonlike Flow
    typeJournal Paper
    journal volume57
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2000)057<1817:TMARIA>2.0.CO;2
    journal fristpage1817
    journal lastpage1838
    treeJournal of the Atmospheric Sciences:;2000:;Volume( 057 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian