YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An LES Study of the Impacts of Land Surface Heterogeneity on Dispersion in the Convective Boundary Layer

    Source: Journal of the Atmospheric Sciences:;2000:;Volume( 057 ):;issue: 002::page 352
    Author:
    Gopalakrishnan, S. G.
    ,
    Avissar, Roni
    DOI: 10.1175/1520-0469(2000)057<0352:ALSOTI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A systematic analysis of the impacts of heat patches and topographical features on the dispersion of passive materials in a shear-free convective boundary layer (CBL) was performed. Large eddy simulations and a Lagrangian particle dispersion model were used for that purpose. Over a homogeneous, flat terrain, the dispersion statistics produced by the model are in agreement with convection tank data and other model results. The horizontal pressure gradients created by surface heat flux heterogeneities generate atmospheric circulations, which impede vertical mixing and, as a result, have a remarkable influence on particle dispersion in the CBL. For a near-surface release, the particles are advected horizontally rather than ?lifted-off,? maintaining a high concentration near the ground surface. Particles released at higher elevations reach the ground surface more slowly than when released above a flat, homogeneous domain. In a shear-free CBL, hilly terrain has little impact on lift-off, dimensionless crosswind-integrated concentration, mean particle height, particle spread, and near-ground-level concentration of particles released near the ground surface. This is true even with hills as high as 25% of the height of the CBL. However, it has a noticeable effect on the dispersion statistics of particles released from higher elevations. In particular, the locus of the maximum in crosswind-integrated concentration of particles released from a source located about 25% of the height of the CBL descends to the surface of an even moderate hill noticeably slower than above a flat, homogeneous domain.
    • Download: (2.088Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An LES Study of the Impacts of Land Surface Heterogeneity on Dispersion in the Convective Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158991
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGopalakrishnan, S. G.
    contributor authorAvissar, Roni
    date accessioned2017-06-09T14:35:57Z
    date available2017-06-09T14:35:57Z
    date copyright2000/01/01
    date issued2000
    identifier issn0022-4928
    identifier otherams-22530.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158991
    description abstractA systematic analysis of the impacts of heat patches and topographical features on the dispersion of passive materials in a shear-free convective boundary layer (CBL) was performed. Large eddy simulations and a Lagrangian particle dispersion model were used for that purpose. Over a homogeneous, flat terrain, the dispersion statistics produced by the model are in agreement with convection tank data and other model results. The horizontal pressure gradients created by surface heat flux heterogeneities generate atmospheric circulations, which impede vertical mixing and, as a result, have a remarkable influence on particle dispersion in the CBL. For a near-surface release, the particles are advected horizontally rather than ?lifted-off,? maintaining a high concentration near the ground surface. Particles released at higher elevations reach the ground surface more slowly than when released above a flat, homogeneous domain. In a shear-free CBL, hilly terrain has little impact on lift-off, dimensionless crosswind-integrated concentration, mean particle height, particle spread, and near-ground-level concentration of particles released near the ground surface. This is true even with hills as high as 25% of the height of the CBL. However, it has a noticeable effect on the dispersion statistics of particles released from higher elevations. In particular, the locus of the maximum in crosswind-integrated concentration of particles released from a source located about 25% of the height of the CBL descends to the surface of an even moderate hill noticeably slower than above a flat, homogeneous domain.
    publisherAmerican Meteorological Society
    titleAn LES Study of the Impacts of Land Surface Heterogeneity on Dispersion in the Convective Boundary Layer
    typeJournal Paper
    journal volume57
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2000)057<0352:ALSOTI>2.0.CO;2
    journal fristpage352
    journal lastpage371
    treeJournal of the Atmospheric Sciences:;2000:;Volume( 057 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian