YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implications of Microphysics for Cloud-Radiation Parameterizations: Lessons from TOGA COARE

    Source: Journal of the Atmospheric Sciences:;2000:;Volume( 057 ):;issue: 002::page 161
    Author:
    Iacobellis, Sam F.
    ,
    Somerville, Richard C. J.
    DOI: 10.1175/1520-0469(2000)057<0161:IOMFCR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A single-column model (SCM) and observational data collected during TOGA COARE were used to investigate the sensitivity of model-produced cloud properties and radiative fluxes to the representation of cloud microphysics in the cloud-radiation parameterizations. Four 78-day SCM numerical experiments were conducted for the atmospheric column overlying the COARE Intensive Flux Array. Each SCM experiment used a different cloud-radiation parameterization with a different representation of cloud microphysics. All the SCM experiments successfully reproduced most of the observed temporal variability in precipitation, cloud fraction, shortwave and longwave cloud forcing, and downwelling surface shortwave flux. The magnitude and temporal variability of the downward surface longwave flux was overestimated by all the SCM experiments. This bias is probably due to clouds forming too low in the model atmosphere. Time-averaged model results were used to examine the sensitivity of model performance to the differences between the four cloud-radiation parameterization packages. The SCM versions that calculated cloud amount as a function of cloud liquid water, instead of using a relative humidity-based cloud scheme, produced smaller amounts of both low and deep convective clouds. Additionally, larger high (cirrus) cloud emissivities were obtained with interactive cloud liquid water schemes than with the relative humidity-based scheme. Surprisingly, calculating cloud optical properties as a function of cloud liquid water amount, instead of parameterizing them based on temperature, humidity, and pressure, resulted in relatively little change in radiative fluxes. However, model radiative fluxes were sensitive to the specification of the effective cloud droplet radius. Optically thicker low clouds and optically thinner high clouds were produced when an interactive effective cloud droplet radius scheme was used instead of specifying a constant value. Comparison of model results to both surface and satellite observations revealed that model experiments that calculated cloud properties as a function of cloud liquid water produced more realistic cloud amounts and radiative fluxes. The most realistic vertical distribution of clouds was obtained from the SCM experiment that included the most complete representation of cloud microphysics. Due to the limitations of SCMs, the above conclusions are model dependent and need to be tested in a general circulation model.
    • Download: (372.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implications of Microphysics for Cloud-Radiation Parameterizations: Lessons from TOGA COARE

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158978
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorIacobellis, Sam F.
    contributor authorSomerville, Richard C. J.
    date accessioned2017-06-09T14:35:56Z
    date available2017-06-09T14:35:56Z
    date copyright2000/01/01
    date issued2000
    identifier issn0022-4928
    identifier otherams-22519.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158978
    description abstractA single-column model (SCM) and observational data collected during TOGA COARE were used to investigate the sensitivity of model-produced cloud properties and radiative fluxes to the representation of cloud microphysics in the cloud-radiation parameterizations. Four 78-day SCM numerical experiments were conducted for the atmospheric column overlying the COARE Intensive Flux Array. Each SCM experiment used a different cloud-radiation parameterization with a different representation of cloud microphysics. All the SCM experiments successfully reproduced most of the observed temporal variability in precipitation, cloud fraction, shortwave and longwave cloud forcing, and downwelling surface shortwave flux. The magnitude and temporal variability of the downward surface longwave flux was overestimated by all the SCM experiments. This bias is probably due to clouds forming too low in the model atmosphere. Time-averaged model results were used to examine the sensitivity of model performance to the differences between the four cloud-radiation parameterization packages. The SCM versions that calculated cloud amount as a function of cloud liquid water, instead of using a relative humidity-based cloud scheme, produced smaller amounts of both low and deep convective clouds. Additionally, larger high (cirrus) cloud emissivities were obtained with interactive cloud liquid water schemes than with the relative humidity-based scheme. Surprisingly, calculating cloud optical properties as a function of cloud liquid water amount, instead of parameterizing them based on temperature, humidity, and pressure, resulted in relatively little change in radiative fluxes. However, model radiative fluxes were sensitive to the specification of the effective cloud droplet radius. Optically thicker low clouds and optically thinner high clouds were produced when an interactive effective cloud droplet radius scheme was used instead of specifying a constant value. Comparison of model results to both surface and satellite observations revealed that model experiments that calculated cloud properties as a function of cloud liquid water produced more realistic cloud amounts and radiative fluxes. The most realistic vertical distribution of clouds was obtained from the SCM experiment that included the most complete representation of cloud microphysics. Due to the limitations of SCMs, the above conclusions are model dependent and need to be tested in a general circulation model.
    publisherAmerican Meteorological Society
    titleImplications of Microphysics for Cloud-Radiation Parameterizations: Lessons from TOGA COARE
    typeJournal Paper
    journal volume57
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(2000)057<0161:IOMFCR>2.0.CO;2
    journal fristpage161
    journal lastpage183
    treeJournal of the Atmospheric Sciences:;2000:;Volume( 057 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian