YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Structure of Idealized Upper-Tropospheric Shear Lines

    Source: Journal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 016::page 2830
    Author:
    Juckes, Martin
    DOI: 10.1175/1520-0469(1999)056<2830:TSOIUT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The structure of idealized two-dimensional shear lines has been calculated for specified tropopause potential temperature anomalies. A cold anomaly corresponds to an intrusion of stratospheric air into the troposphere. A balanced hydrostatic primitive equation structure is derived using an iterative technique. The resulting wind and vertical displacement of the tropopause are compared with a recent result extending quasigeostrophic theory to situations where the variation of potential vorticity along an isentrope or isobar is large, as is the case, for instance, when the isosurface intersects the tropopause. The formulation of the theory is clarified by analyzing the relation between quasigeostrophic potential vorticity and Ertel?s potential vorticity. The comparison between the low?Rossby number theoretical approximation and primitive equation structures confirms the theoretical prediction that the relative error is proportional to the Rossby number. The constant of proportionality is close to unity. The effect of the lower boundary condition on the shear line structure is analyzed. For a shear line consisting of an upper-tropospheric potential vorticity anomaly in the absence of a surface temperature anomaly it is found that the horizontal extent of the wind is not limited, as might have been expected, by the Rossby deformation radius, but rather by the largest scale of the shear line, which may be somewhat greater.
    • Download: (669.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Structure of Idealized Upper-Tropospheric Shear Lines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158867
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorJuckes, Martin
    date accessioned2017-06-09T14:35:40Z
    date available2017-06-09T14:35:40Z
    date copyright1999/08/01
    date issued1999
    identifier issn0022-4928
    identifier otherams-22419.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158867
    description abstractThe structure of idealized two-dimensional shear lines has been calculated for specified tropopause potential temperature anomalies. A cold anomaly corresponds to an intrusion of stratospheric air into the troposphere. A balanced hydrostatic primitive equation structure is derived using an iterative technique. The resulting wind and vertical displacement of the tropopause are compared with a recent result extending quasigeostrophic theory to situations where the variation of potential vorticity along an isentrope or isobar is large, as is the case, for instance, when the isosurface intersects the tropopause. The formulation of the theory is clarified by analyzing the relation between quasigeostrophic potential vorticity and Ertel?s potential vorticity. The comparison between the low?Rossby number theoretical approximation and primitive equation structures confirms the theoretical prediction that the relative error is proportional to the Rossby number. The constant of proportionality is close to unity. The effect of the lower boundary condition on the shear line structure is analyzed. For a shear line consisting of an upper-tropospheric potential vorticity anomaly in the absence of a surface temperature anomaly it is found that the horizontal extent of the wind is not limited, as might have been expected, by the Rossby deformation radius, but rather by the largest scale of the shear line, which may be somewhat greater.
    publisherAmerican Meteorological Society
    titleThe Structure of Idealized Upper-Tropospheric Shear Lines
    typeJournal Paper
    journal volume56
    journal issue16
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1999)056<2830:TSOIUT>2.0.CO;2
    journal fristpage2830
    journal lastpage2845
    treeJournal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian