YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesoscale Simulation of Supercritical, Subcritical, and Transcritical Flow along Coastal Topography

    Source: Journal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 016::page 2780
    Author:
    Burk, Stephen D.
    ,
    Haack, Tracy
    ,
    Samelson, R. M.
    DOI: 10.1175/1520-0469(1999)056<2780:MSOSSA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A mesoscale atmospheric model is used to address the characteristics of stratified flow bounded by a side wall along a varying coastline. Initial Froude number values are varied through alteration of marine inversion strength, permitting examination of supercritical, subcritical, and transcritical flow regimes encountering several coastal configurations. Consistent with shallow water models, sharp drops in boundary layer depth and flow acceleration occur in flow rounding convex bends; however, significant flow response occurs in the stratified layer aloft, which is unexplained by conventional shallow water theory. The strongest flow acceleration occurs in the transcritical case while, regardless of inversion strength, the deformation of the isentropes aloft shows general structural similarity. Advection of horizontal momentum is an important component of the horizontal force balance. A simulation having several coastline bends exhibits a detached, oblique hydraulic jump upwind of a concave bend that strongly blocks the flow. For the single-bend case, a shallow water similarity theory for stratified flow provides qualitative, and partial quantitative, agreement with the mesoscale model, in the boundary layer and aloft. Horizontal structure functions for these similarity solutions satisfy a set of equivalent shallow water equations. This comparison provides a new perspective on previous shallow water models of supercritical flow around coastal bends and suggests that the existence of the supercritical flow response may depend more on the presence of a low-level jet than on a sharp boundary layer inversion.
    • Download: (523.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesoscale Simulation of Supercritical, Subcritical, and Transcritical Flow along Coastal Topography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158864
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBurk, Stephen D.
    contributor authorHaack, Tracy
    contributor authorSamelson, R. M.
    date accessioned2017-06-09T14:35:40Z
    date available2017-06-09T14:35:40Z
    date copyright1999/08/01
    date issued1999
    identifier issn0022-4928
    identifier otherams-22416.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158864
    description abstractA mesoscale atmospheric model is used to address the characteristics of stratified flow bounded by a side wall along a varying coastline. Initial Froude number values are varied through alteration of marine inversion strength, permitting examination of supercritical, subcritical, and transcritical flow regimes encountering several coastal configurations. Consistent with shallow water models, sharp drops in boundary layer depth and flow acceleration occur in flow rounding convex bends; however, significant flow response occurs in the stratified layer aloft, which is unexplained by conventional shallow water theory. The strongest flow acceleration occurs in the transcritical case while, regardless of inversion strength, the deformation of the isentropes aloft shows general structural similarity. Advection of horizontal momentum is an important component of the horizontal force balance. A simulation having several coastline bends exhibits a detached, oblique hydraulic jump upwind of a concave bend that strongly blocks the flow. For the single-bend case, a shallow water similarity theory for stratified flow provides qualitative, and partial quantitative, agreement with the mesoscale model, in the boundary layer and aloft. Horizontal structure functions for these similarity solutions satisfy a set of equivalent shallow water equations. This comparison provides a new perspective on previous shallow water models of supercritical flow around coastal bends and suggests that the existence of the supercritical flow response may depend more on the presence of a low-level jet than on a sharp boundary layer inversion.
    publisherAmerican Meteorological Society
    titleMesoscale Simulation of Supercritical, Subcritical, and Transcritical Flow along Coastal Topography
    typeJournal Paper
    journal volume56
    journal issue16
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1999)056<2780:MSOSSA>2.0.CO;2
    journal fristpage2780
    journal lastpage2795
    treeJournal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian