YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cloud-Induced Infrared Radiative Heating and Its Implications for Large-Scale Tropical Circulations

    Source: Journal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 015::page 2657
    Author:
    Sohn, Byung-Ju
    DOI: 10.1175/1520-0469(1999)056<2657:CIIRHA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Three-dimensional global distributions of longwave radiative cooling for the summer of 1988 and the winter of 1989 are generated from radiative transfer calculations using European Centre for Medium-Range Weather Forecasts temperature and humidity profiles and International Satellite Cloud Climatology Project cloudiness as inputs. By adding the cooling of the clear atmosphere to the total radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the global atmospheric circulation. Cloud-induced heating, whose general pattern is well in agreement with total diabatic heating suggested by other studies, exhibits its maximum heating areas within the Indian Ocean and the western Pacific. By contrast, maximum cooling areas are found in the northern and southern flanks of the Indian Ocean, and over the eastern Pacific off the west coasts of both North and South America. The fact that these heating and cooling distributions reinforce the climatologically favored heating gradients both in the meridional and zonal directions indicates that cloud-radiative feedback can enhance the strength of both the north?south Hadley circulation and the east?west Walker circulation.
    • Download: (339.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cloud-Induced Infrared Radiative Heating and Its Implications for Large-Scale Tropical Circulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158856
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSohn, Byung-Ju
    date accessioned2017-06-09T14:35:37Z
    date available2017-06-09T14:35:37Z
    date copyright1999/08/01
    date issued1999
    identifier issn0022-4928
    identifier otherams-22409.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158856
    description abstractThree-dimensional global distributions of longwave radiative cooling for the summer of 1988 and the winter of 1989 are generated from radiative transfer calculations using European Centre for Medium-Range Weather Forecasts temperature and humidity profiles and International Satellite Cloud Climatology Project cloudiness as inputs. By adding the cooling of the clear atmosphere to the total radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the global atmospheric circulation. Cloud-induced heating, whose general pattern is well in agreement with total diabatic heating suggested by other studies, exhibits its maximum heating areas within the Indian Ocean and the western Pacific. By contrast, maximum cooling areas are found in the northern and southern flanks of the Indian Ocean, and over the eastern Pacific off the west coasts of both North and South America. The fact that these heating and cooling distributions reinforce the climatologically favored heating gradients both in the meridional and zonal directions indicates that cloud-radiative feedback can enhance the strength of both the north?south Hadley circulation and the east?west Walker circulation.
    publisherAmerican Meteorological Society
    titleCloud-Induced Infrared Radiative Heating and Its Implications for Large-Scale Tropical Circulations
    typeJournal Paper
    journal volume56
    journal issue15
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1999)056<2657:CIIRHA>2.0.CO;2
    journal fristpage2657
    journal lastpage2672
    treeJournal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 015
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian