YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Baroclinic–Barotropic Adjustments in a Meridionally Wide Domain

    Source: Journal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 013::page 2246
    Author:
    Nakamura, Noboru
    DOI: 10.1175/1520-0469(1999)056<2246:BBAIAM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Baroclinic adjustment hypothesis fails to account for the enhancement of the barotropic jet observed in idealized baroclinic-wave life-cycle simulations. In this paper, an adjustment theory more consistent with the numerical results is developed through a careful examination of life-cycle experiments and nonseparable eigenvalue problems using the two-layer model. In all cases examined, nonlinear eddies emanate from an unstable normal mode of meridionally concentrated gradients of the zonal-mean potential vorticity (PV). The flows are neither forced nor damped, except that moderate second-order horizontal diffusion is used to achieve an eddy-free state in a finite computational time. The final zonal-mean states are typically characterized by a well-defined barotropic jet that is not sufficiently stable in the sense of Charney and Stern but stable for all zonal wavenumbers allowed by the geometry of the channel. It is shown that vertical asymmetry in the meridional arrangement of PV leads to (a) production of barotropically sheared jet and (b) shift in the zonal scale of baroclinic instability and subsequent neutralization. It is argued that the extent of the meridional arrangement necessary to suppress the most momentum-transporting baroclinic wave determines the width of the adjusted flow. This width is roughly proportional to the initial zonal scale of the mode on the f plane but constrained by a beta-related critical mixing length on the beta plane. Relationship to other theories (e.g., barotropic governor and geostrophic turbulence) is discussed, along with the relevance of the theory to the earth?s midlatitude troposphere.
    • Download: (220.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Baroclinic–Barotropic Adjustments in a Meridionally Wide Domain

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158828
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorNakamura, Noboru
    date accessioned2017-06-09T14:35:33Z
    date available2017-06-09T14:35:33Z
    date copyright1999/07/01
    date issued1999
    identifier issn0022-4928
    identifier otherams-22384.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158828
    description abstractBaroclinic adjustment hypothesis fails to account for the enhancement of the barotropic jet observed in idealized baroclinic-wave life-cycle simulations. In this paper, an adjustment theory more consistent with the numerical results is developed through a careful examination of life-cycle experiments and nonseparable eigenvalue problems using the two-layer model. In all cases examined, nonlinear eddies emanate from an unstable normal mode of meridionally concentrated gradients of the zonal-mean potential vorticity (PV). The flows are neither forced nor damped, except that moderate second-order horizontal diffusion is used to achieve an eddy-free state in a finite computational time. The final zonal-mean states are typically characterized by a well-defined barotropic jet that is not sufficiently stable in the sense of Charney and Stern but stable for all zonal wavenumbers allowed by the geometry of the channel. It is shown that vertical asymmetry in the meridional arrangement of PV leads to (a) production of barotropically sheared jet and (b) shift in the zonal scale of baroclinic instability and subsequent neutralization. It is argued that the extent of the meridional arrangement necessary to suppress the most momentum-transporting baroclinic wave determines the width of the adjusted flow. This width is roughly proportional to the initial zonal scale of the mode on the f plane but constrained by a beta-related critical mixing length on the beta plane. Relationship to other theories (e.g., barotropic governor and geostrophic turbulence) is discussed, along with the relevance of the theory to the earth?s midlatitude troposphere.
    publisherAmerican Meteorological Society
    titleBaroclinic–Barotropic Adjustments in a Meridionally Wide Domain
    typeJournal Paper
    journal volume56
    journal issue13
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1999)056<2246:BBAIAM>2.0.CO;2
    journal fristpage2246
    journal lastpage2260
    treeJournal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian