YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    First Frequency-Domain Interferometry Observations of Large-Scale Vertical Motion in the Atmosphere

    Source: Journal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 009::page 1248
    Author:
    Muschinski, Andreas
    ,
    Chilson, Phillip B.
    ,
    Kern, Stefan
    ,
    Nielinger, Jost
    ,
    Schmidt, Gerhard
    ,
    Prenosil, Thomas
    DOI: 10.1175/1520-0469(1999)056<1248:FFDIOO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The spatiotemporal distribution of the vertical velocity at synoptic and subsynoptic scales is key to the patterns of weather and climate on earth. On these scales, the vertical velocity is on the order of one to a few centimeters per second, typically about three orders of magnitude smaller than typical horizontal wind velocities. Because of the smallness of large-scale vertical velocities relative to typical horizontal velocities, a direct observation of the large-scale vertical air velocity is extremely difficult. In a case study on observational material obtained during a 68-h experiment using the SOUSY very high frequency (VHF) radar in the Harz Mountains in Germany, the authors present the first intercomparison between three different sources of physical information that can provide large-scale vertical wind velocities: (i) the Doppler shifts observed with a vertically pointing VHF radar; (ii) the rates of change of the altitudes of refractive-index discontinuities as identified with frequency-domain interferometry (FDI), which is still a relatively unexplored technique in meteorology; and (iii) the output of a regional numerical weather prediction model (NWPM), which has been set up to model the meteorological situation during the observational period. There are several phenomena that have been known to possibly cause significant biases in mean vertical velocities retrieved from the Doppler shifts measured with vertically pointing clear-air VHF radars: (i) stationary or nonstationary gravity waves with vertical-velocity amplitudes up to the order of 1 m s?1; (ii) stationary or horizontally advected tilted refractive-index discontinuities that are aspect sensitive in the VHF regime; and (iii) a correlation between the radar-reflectivity fluctuations and the vertical-velocity fluctuations within a vertically propagating gravity wave. On the basis of an intercomparison between the vertical velocities retrieved from (i) ?standard Doppler? VHF radar observations, (ii) VHF FDI observations, and (iii) the NWPM output, the authors present first evidence that, under ideal conditions, VHF FDI can be used to directly monitor large-scale vertical motion.
    • Download: (236.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      First Frequency-Domain Interferometry Observations of Large-Scale Vertical Motion in the Atmosphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158755
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMuschinski, Andreas
    contributor authorChilson, Phillip B.
    contributor authorKern, Stefan
    contributor authorNielinger, Jost
    contributor authorSchmidt, Gerhard
    contributor authorPrenosil, Thomas
    date accessioned2017-06-09T14:35:24Z
    date available2017-06-09T14:35:24Z
    date copyright1999/05/01
    date issued1999
    identifier issn0022-4928
    identifier otherams-22318.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158755
    description abstractThe spatiotemporal distribution of the vertical velocity at synoptic and subsynoptic scales is key to the patterns of weather and climate on earth. On these scales, the vertical velocity is on the order of one to a few centimeters per second, typically about three orders of magnitude smaller than typical horizontal wind velocities. Because of the smallness of large-scale vertical velocities relative to typical horizontal velocities, a direct observation of the large-scale vertical air velocity is extremely difficult. In a case study on observational material obtained during a 68-h experiment using the SOUSY very high frequency (VHF) radar in the Harz Mountains in Germany, the authors present the first intercomparison between three different sources of physical information that can provide large-scale vertical wind velocities: (i) the Doppler shifts observed with a vertically pointing VHF radar; (ii) the rates of change of the altitudes of refractive-index discontinuities as identified with frequency-domain interferometry (FDI), which is still a relatively unexplored technique in meteorology; and (iii) the output of a regional numerical weather prediction model (NWPM), which has been set up to model the meteorological situation during the observational period. There are several phenomena that have been known to possibly cause significant biases in mean vertical velocities retrieved from the Doppler shifts measured with vertically pointing clear-air VHF radars: (i) stationary or nonstationary gravity waves with vertical-velocity amplitudes up to the order of 1 m s?1; (ii) stationary or horizontally advected tilted refractive-index discontinuities that are aspect sensitive in the VHF regime; and (iii) a correlation between the radar-reflectivity fluctuations and the vertical-velocity fluctuations within a vertically propagating gravity wave. On the basis of an intercomparison between the vertical velocities retrieved from (i) ?standard Doppler? VHF radar observations, (ii) VHF FDI observations, and (iii) the NWPM output, the authors present first evidence that, under ideal conditions, VHF FDI can be used to directly monitor large-scale vertical motion.
    publisherAmerican Meteorological Society
    titleFirst Frequency-Domain Interferometry Observations of Large-Scale Vertical Motion in the Atmosphere
    typeJournal Paper
    journal volume56
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1999)056<1248:FFDIOO>2.0.CO;2
    journal fristpage1248
    journal lastpage1258
    treeJournal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian