YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Scale-Dependent Properties of Optimal Perturbations on a Zonally Varying Barotropic Flow

    Source: Journal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 009::page 1238
    Author:
    Huang, Huei-Ping
    DOI: 10.1175/1520-0469(1999)056<1238:SDPOOP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The scale-dependent characteristics of the optimal perturbations in a zonally asymmetric barotropic model are examined. The dependence of the optimal energy growth on the initial scale is investigated through the calculations of spectrally constrained optimal perturbations. Considering an optimization time of τ = 3 days, and a basic state containing an idealized Asian jet, the optimal amplification factor generally increases with the decrease of the imposed initial scale. In the absence of diffusion, the most amplifying scale becomes the smallest scale in the model. An energetics analysis shows that the energy conversion in the optimal excitation process is dominated by the shear straining term, with a sharp increase in the scale of the perturbation accompanying the explosive energy growth. These results show the similarity between the optimally growing process in the zonally asymmetric system and the shear straining process in a parallel shear flow. Except when a small τ is considered or a sufficiently strong diffusion is used in the system, the optimal energy growth for small-scale disturbances sensitively depends on the zonally varying feature of the basic state. With τ = 3 days, the optimal amplification factors for small-scale disturbances are reduced significantly when the idealized Asian jet is shortened by only one-fifth. At the same time, those for medium- and large-scale disturbances are almost unaffected by the change of the basic state. The reasons for this contrast of the sensitivity property between the small and large scales are discussed.
    • Download: (200.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Scale-Dependent Properties of Optimal Perturbations on a Zonally Varying Barotropic Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158754
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHuang, Huei-Ping
    date accessioned2017-06-09T14:35:23Z
    date available2017-06-09T14:35:23Z
    date copyright1999/05/01
    date issued1999
    identifier issn0022-4928
    identifier otherams-22317.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158754
    description abstractThe scale-dependent characteristics of the optimal perturbations in a zonally asymmetric barotropic model are examined. The dependence of the optimal energy growth on the initial scale is investigated through the calculations of spectrally constrained optimal perturbations. Considering an optimization time of τ = 3 days, and a basic state containing an idealized Asian jet, the optimal amplification factor generally increases with the decrease of the imposed initial scale. In the absence of diffusion, the most amplifying scale becomes the smallest scale in the model. An energetics analysis shows that the energy conversion in the optimal excitation process is dominated by the shear straining term, with a sharp increase in the scale of the perturbation accompanying the explosive energy growth. These results show the similarity between the optimally growing process in the zonally asymmetric system and the shear straining process in a parallel shear flow. Except when a small τ is considered or a sufficiently strong diffusion is used in the system, the optimal energy growth for small-scale disturbances sensitively depends on the zonally varying feature of the basic state. With τ = 3 days, the optimal amplification factors for small-scale disturbances are reduced significantly when the idealized Asian jet is shortened by only one-fifth. At the same time, those for medium- and large-scale disturbances are almost unaffected by the change of the basic state. The reasons for this contrast of the sensitivity property between the small and large scales are discussed.
    publisherAmerican Meteorological Society
    titleScale-Dependent Properties of Optimal Perturbations on a Zonally Varying Barotropic Flow
    typeJournal Paper
    journal volume56
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1999)056<1238:SDPOOP>2.0.CO;2
    journal fristpage1238
    journal lastpage1247
    treeJournal of the Atmospheric Sciences:;1999:;Volume( 056 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian