YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Oceanic Kelvin Waves and the Madden–Julian Oscillation

    Source: Journal of the Atmospheric Sciences:;1998:;Volume( 055 ):;issue: 001::page 88
    Author:
    Hendon, Harry H.
    ,
    Liebmann, Brant
    ,
    Glick, John D.
    DOI: 10.1175/1520-0469(1998)055<0088:OKWATM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The relationship between the Madden?Julian oscillation (MJO), the dominant mode of intraseasonal variability in the tropical troposphere, and the Kelvin waves that dominate the variability of the equatorial thermocline in the central and eastern Pacific Oceans is explored. The Kelvin waves have period near 70 days, which is distinctly longer than the dominant period of the MJO (40?50 days). Their zonal wavelength is roughly the width of the Pacific basin, which is about twice the zonal scale of the zonal stress anomalies produced by the MJO across the western Pacific. Their eastward phase speed is about 2.3 m s?1, which is indistinguishable from the gravest baroclinic mode using the observed stratification in the Pacific. The stress anomalies that force the Kelvin waves are shown to be associated with the lower-frequency components of the MJO (i.e., periods greater than about 60 days). These stress anomalies move eastward at less than 5 m s?1 from the Indian Ocean to the date line, where their local wavelength is about 15000 km. East of the date line, where the convective component of the MJO weakens, the phase speed of the stress anomalies increases to greater than 10 m s?1. The similarity of the phase speeds of the MJO west of the date line and of the gravest baroclinic Kelvin wave is shown to result in near-resonant forcing by the relatively weak, but zonally broad, stress anomalies induced by the MJO. Despite the large increase in phase speed east of the date line, the MJO-induced stress anomalies are shown to continue to positively project onto the Kelvin waves to about 130°W, which is where the observed thermocline perturbations are the largest. East of this longitude, the MJO-induced stress anomalies detract from the amplitude of the Kelvin waves. The large spatial scale of the zonal stress anomalies produced by the MJO and the near-resonant forcing west of the date line helps explain the observed spectral peak near 70 days for the Kelvin waves despite the higher central frequency of the MJO.
    • Download: (547.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Oceanic Kelvin Waves and the Madden–Julian Oscillation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158507
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHendon, Harry H.
    contributor authorLiebmann, Brant
    contributor authorGlick, John D.
    date accessioned2017-06-09T14:34:48Z
    date available2017-06-09T14:34:48Z
    date copyright1998/01/01
    date issued1998
    identifier issn0022-4928
    identifier otherams-22095.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158507
    description abstractThe relationship between the Madden?Julian oscillation (MJO), the dominant mode of intraseasonal variability in the tropical troposphere, and the Kelvin waves that dominate the variability of the equatorial thermocline in the central and eastern Pacific Oceans is explored. The Kelvin waves have period near 70 days, which is distinctly longer than the dominant period of the MJO (40?50 days). Their zonal wavelength is roughly the width of the Pacific basin, which is about twice the zonal scale of the zonal stress anomalies produced by the MJO across the western Pacific. Their eastward phase speed is about 2.3 m s?1, which is indistinguishable from the gravest baroclinic mode using the observed stratification in the Pacific. The stress anomalies that force the Kelvin waves are shown to be associated with the lower-frequency components of the MJO (i.e., periods greater than about 60 days). These stress anomalies move eastward at less than 5 m s?1 from the Indian Ocean to the date line, where their local wavelength is about 15000 km. East of the date line, where the convective component of the MJO weakens, the phase speed of the stress anomalies increases to greater than 10 m s?1. The similarity of the phase speeds of the MJO west of the date line and of the gravest baroclinic Kelvin wave is shown to result in near-resonant forcing by the relatively weak, but zonally broad, stress anomalies induced by the MJO. Despite the large increase in phase speed east of the date line, the MJO-induced stress anomalies are shown to continue to positively project onto the Kelvin waves to about 130°W, which is where the observed thermocline perturbations are the largest. East of this longitude, the MJO-induced stress anomalies detract from the amplitude of the Kelvin waves. The large spatial scale of the zonal stress anomalies produced by the MJO and the near-resonant forcing west of the date line helps explain the observed spectral peak near 70 days for the Kelvin waves despite the higher central frequency of the MJO.
    publisherAmerican Meteorological Society
    titleOceanic Kelvin Waves and the Madden–Julian Oscillation
    typeJournal Paper
    journal volume55
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1998)055<0088:OKWATM>2.0.CO;2
    journal fristpage88
    journal lastpage101
    treeJournal of the Atmospheric Sciences:;1998:;Volume( 055 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian