YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Maximum Potential Intensity of Tropical Cyclones

    Source: Journal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 021::page 2519
    Author:
    Holland, Greg J.
    DOI: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A thermodynamic approach to estimating maximum potential intensity (MPI) of tropical cyclones is described and compared with observations and previous studies. The approach requires an atmospheric temperature sounding, SST, and surface pressure; includes the oceanic feedback of increasing moist entropy associated with falling surface pressure over a steady SST; and explicitly incorporates a cloudy eyewall and a clear eye. Energetically consistent, analytic solutions exist for all known atmospheric conditions. The method is straightforward to apply and is applicable to operational analyses and numerical model forecasts, including climate model simulations. The derived MPI is highly sensitive to the surface relative humidity under the eyewall, to the height of the warm core, and to transient changes of ocean surface temperature. The role of the ocean is to initially contribute to the establishment of the ambient environment suitable for cyclone development, then to provide the additional energy required for development of an intense cyclone. The major limiting factor on cyclone intensity is the height and amplitude of the warm core that can develop; this is closely linked to the height to which eyewall clouds can reach, which is related to the level of moist entropy that can be achieved from ocean interactions under the eyewall. Moist ascent provides almost all the warming above 200 hPa throughout the cyclone core, including the eye, where warm temperatures are derived by inward advection and detrainment mixing from the eyewall. The clear eye contributes roughly half the total warming below 300 hPa and produces a less intense cyclone than could be achieved by purely saturated moist processes. There are necessarily several simplifications incorporated to arrive at a tractable solution, the consequences of which are discussed in detail. Nevertheless, application of the method indicates very close agreement with observations. For SST < 26°C there is generally insufficient energy for development. From 26° to 28°C SST the ambient atmosphere warms sharply in the lower troposphere and cools near the tropopause, but with little change in midlevels. The result is a rapid increase of MPI of about 30 hPa °C?1. At higher SST, the atmospheric destabilization ceases and the rate of increase of MPI is reduced.
    • Download: (349.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Maximum Potential Intensity of Tropical Cyclones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158474
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHolland, Greg J.
    date accessioned2017-06-09T14:34:43Z
    date available2017-06-09T14:34:43Z
    date copyright1997/11/01
    date issued1997
    identifier issn0022-4928
    identifier otherams-22065.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158474
    description abstractA thermodynamic approach to estimating maximum potential intensity (MPI) of tropical cyclones is described and compared with observations and previous studies. The approach requires an atmospheric temperature sounding, SST, and surface pressure; includes the oceanic feedback of increasing moist entropy associated with falling surface pressure over a steady SST; and explicitly incorporates a cloudy eyewall and a clear eye. Energetically consistent, analytic solutions exist for all known atmospheric conditions. The method is straightforward to apply and is applicable to operational analyses and numerical model forecasts, including climate model simulations. The derived MPI is highly sensitive to the surface relative humidity under the eyewall, to the height of the warm core, and to transient changes of ocean surface temperature. The role of the ocean is to initially contribute to the establishment of the ambient environment suitable for cyclone development, then to provide the additional energy required for development of an intense cyclone. The major limiting factor on cyclone intensity is the height and amplitude of the warm core that can develop; this is closely linked to the height to which eyewall clouds can reach, which is related to the level of moist entropy that can be achieved from ocean interactions under the eyewall. Moist ascent provides almost all the warming above 200 hPa throughout the cyclone core, including the eye, where warm temperatures are derived by inward advection and detrainment mixing from the eyewall. The clear eye contributes roughly half the total warming below 300 hPa and produces a less intense cyclone than could be achieved by purely saturated moist processes. There are necessarily several simplifications incorporated to arrive at a tractable solution, the consequences of which are discussed in detail. Nevertheless, application of the method indicates very close agreement with observations. For SST < 26°C there is generally insufficient energy for development. From 26° to 28°C SST the ambient atmosphere warms sharply in the lower troposphere and cools near the tropopause, but with little change in midlevels. The result is a rapid increase of MPI of about 30 hPa °C?1. At higher SST, the atmospheric destabilization ceases and the rate of increase of MPI is reduced.
    publisherAmerican Meteorological Society
    titleThe Maximum Potential Intensity of Tropical Cyclones
    typeJournal Paper
    journal volume54
    journal issue21
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
    journal fristpage2519
    journal lastpage2541
    treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian