YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Amplification of Stationary Rossby Waves near Resonance. Part II

    Source: Journal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 020::page 2441
    Author:
    Malguzzi, P.
    ,
    Speranza, A.
    ,
    Sutera, A.
    ,
    Caballero, R.
    DOI: 10.1175/1520-0469(1997)054<2441:NAOSRW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In a preceding paper the authors showed that planetary waves of very different amplitudes can be sustained on the same configuration of the zonal wind by asymptotically balancing the energy contributions related to Ekman dissipation and orographic drag. The basic physical mechanism considered, namely, nonlinear self-interaction of the eddy field, was modeled in a vertically continuous quasigeostrophic model by means of a perturbative approach that relies on an ad hoc choice of the meridional profile of the wave field itself. Given the mathematical limitations of this approach, some important aspects of the mechanism of resonance bending were not explored; in particular, the sensitivity of stationary solutions to changes in the zonal wind profile, channel geometry, and physical parameters such as dissipation coefficients and mountain height. In the present paper, the robustness of the mechanism of resonance folding by numerical means is analyzed, in the framework of both the barotropic and the two-level quasigeostrophic model. It is demonstrated that resonance bending is a generic property of the equations governing atmospheric motions on the planetary scale. In particular, it is shown that multiple stationary solutions can be achieved with realistic values of Ekman dissipation and mountain height in the context of the two-level quasigeostrophic model. The authors formulate a weakly nonlinear theory that does not rely on any a priori assumptions about the meridional structure of the solution. Numerical and analytical results are compared, obtaining a satisfactory agreement in the parameter range in which the asymptotic theory is valid. The authors conclude that the present model is still a good candidate for the explanation of one of the most relevant statistical property of low-frequency variability at midlatitudes, namely, that large amplitude fluctuations of ultralong waves correspond to small variations of the zonal wind.
    • Download: (224.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Amplification of Stationary Rossby Waves near Resonance. Part II

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158469
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMalguzzi, P.
    contributor authorSperanza, A.
    contributor authorSutera, A.
    contributor authorCaballero, R.
    date accessioned2017-06-09T14:34:42Z
    date available2017-06-09T14:34:42Z
    date copyright1997/10/01
    date issued1997
    identifier issn0022-4928
    identifier otherams-22060.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158469
    description abstractIn a preceding paper the authors showed that planetary waves of very different amplitudes can be sustained on the same configuration of the zonal wind by asymptotically balancing the energy contributions related to Ekman dissipation and orographic drag. The basic physical mechanism considered, namely, nonlinear self-interaction of the eddy field, was modeled in a vertically continuous quasigeostrophic model by means of a perturbative approach that relies on an ad hoc choice of the meridional profile of the wave field itself. Given the mathematical limitations of this approach, some important aspects of the mechanism of resonance bending were not explored; in particular, the sensitivity of stationary solutions to changes in the zonal wind profile, channel geometry, and physical parameters such as dissipation coefficients and mountain height. In the present paper, the robustness of the mechanism of resonance folding by numerical means is analyzed, in the framework of both the barotropic and the two-level quasigeostrophic model. It is demonstrated that resonance bending is a generic property of the equations governing atmospheric motions on the planetary scale. In particular, it is shown that multiple stationary solutions can be achieved with realistic values of Ekman dissipation and mountain height in the context of the two-level quasigeostrophic model. The authors formulate a weakly nonlinear theory that does not rely on any a priori assumptions about the meridional structure of the solution. Numerical and analytical results are compared, obtaining a satisfactory agreement in the parameter range in which the asymptotic theory is valid. The authors conclude that the present model is still a good candidate for the explanation of one of the most relevant statistical property of low-frequency variability at midlatitudes, namely, that large amplitude fluctuations of ultralong waves correspond to small variations of the zonal wind.
    publisherAmerican Meteorological Society
    titleNonlinear Amplification of Stationary Rossby Waves near Resonance. Part II
    typeJournal Paper
    journal volume54
    journal issue20
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1997)054<2441:NAOSRW>2.0.CO;2
    journal fristpage2441
    journal lastpage2451
    treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian