YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cirrus Cloud Radiative and Microphysical Properties from Ground Observations and In Situ Measurements during FIRE 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer Modeling

    Source: Journal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 018::page 2320
    Author:
    Kinne, S.
    ,
    Ackerman, T. P.
    ,
    Shiobara, M.
    ,
    Uchiyama, A.
    ,
    Heymsfield, A. J.
    ,
    Miloshevich, L.
    ,
    Wendell, J.
    ,
    Eloranta, E.
    ,
    Purgold, C.
    ,
    Bergstrom, R. W.
    DOI: 10.1175/1520-0469(1997)054<2320:CCRAMP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Measurements from the FIRE 1991 cirrus cloud field experiment in the central United States are presented and analyzed. The first part focuses on cirrus microphysical properties. Aircraft 2D-probe in situ data at different cloud altitudes were evaluated for cirrus cases on four different days. Also presented are simultaneous data samples from balloonborne videosondes. Only these balloonsondes could detect the smaller crystals. Their data suggest (at least for midlatitude altitudes below 10 km) that ice crystals smaller than 15 ?m in size are rare and that small ice crystals not detected by 2D-probe measurements are radiatively of minor importance, as overlooked 2D-probe crystals account for about 10% of the total extinction. The second part focuses on the link between cirrus cloud properties and radiation. With cloud macrophysical properties from surface remote sensing added to the microphysical data and additional radiation measurements at the surface, testbeds for radiative transfer models were created. To focus on scattering processes, model evaluations were limited to the solar radiative transfer by comparing calculated and measured transmissions of sunlight at the surface. Comparisons under cloud-free conditions already reveal a model bias of about +45 W m?2 for the hemispheric solar downward broadband flux. This discrepancy, which is (at least in part) difficult to explain, has to be accounted for in comparisons involving clouds. Comparisons under cirrus cloud conditions identify as the major obstacle in cirrus solar radiative transfer modeling the inability of one-dimensional radiative transfer models to account for horizontal inhomogeneities. The successful incorporation of multidimensional radiative transfer effects will depend not only on better models but critically on the ability to measure and to define characteristic inhomogeneity scales of cloud fields. The relative minor error related to the microphysical treatment is in part a reflection of the improved understanding on solar scattering on ice crystals over the last decade and of the available wealth on ice-crystal size and shape data for this study. In absence of this information, uncertainties from microphysical cirrus model assumptions will remain high.
    • Download: (1.258Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cirrus Cloud Radiative and Microphysical Properties from Ground Observations and In Situ Measurements during FIRE 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158461
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKinne, S.
    contributor authorAckerman, T. P.
    contributor authorShiobara, M.
    contributor authorUchiyama, A.
    contributor authorHeymsfield, A. J.
    contributor authorMiloshevich, L.
    contributor authorWendell, J.
    contributor authorEloranta, E.
    contributor authorPurgold, C.
    contributor authorBergstrom, R. W.
    date accessioned2017-06-09T14:34:41Z
    date available2017-06-09T14:34:41Z
    date copyright1997/09/01
    date issued1997
    identifier issn0022-4928
    identifier otherams-22053.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158461
    description abstractMeasurements from the FIRE 1991 cirrus cloud field experiment in the central United States are presented and analyzed. The first part focuses on cirrus microphysical properties. Aircraft 2D-probe in situ data at different cloud altitudes were evaluated for cirrus cases on four different days. Also presented are simultaneous data samples from balloonborne videosondes. Only these balloonsondes could detect the smaller crystals. Their data suggest (at least for midlatitude altitudes below 10 km) that ice crystals smaller than 15 ?m in size are rare and that small ice crystals not detected by 2D-probe measurements are radiatively of minor importance, as overlooked 2D-probe crystals account for about 10% of the total extinction. The second part focuses on the link between cirrus cloud properties and radiation. With cloud macrophysical properties from surface remote sensing added to the microphysical data and additional radiation measurements at the surface, testbeds for radiative transfer models were created. To focus on scattering processes, model evaluations were limited to the solar radiative transfer by comparing calculated and measured transmissions of sunlight at the surface. Comparisons under cloud-free conditions already reveal a model bias of about +45 W m?2 for the hemispheric solar downward broadband flux. This discrepancy, which is (at least in part) difficult to explain, has to be accounted for in comparisons involving clouds. Comparisons under cirrus cloud conditions identify as the major obstacle in cirrus solar radiative transfer modeling the inability of one-dimensional radiative transfer models to account for horizontal inhomogeneities. The successful incorporation of multidimensional radiative transfer effects will depend not only on better models but critically on the ability to measure and to define characteristic inhomogeneity scales of cloud fields. The relative minor error related to the microphysical treatment is in part a reflection of the improved understanding on solar scattering on ice crystals over the last decade and of the available wealth on ice-crystal size and shape data for this study. In absence of this information, uncertainties from microphysical cirrus model assumptions will remain high.
    publisherAmerican Meteorological Society
    titleCirrus Cloud Radiative and Microphysical Properties from Ground Observations and In Situ Measurements during FIRE 1991 and Their Application to Exhibit Problems in Cirrus Solar Radiative Transfer Modeling
    typeJournal Paper
    journal volume54
    journal issue18
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1997)054<2320:CCRAMP>2.0.CO;2
    journal fristpage2320
    journal lastpage2344
    treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian