YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of an Artificial Neural Network Simulation for Top-of-Atmosphere Radiative Flux Estimation from CERES

    Source: Journal of Atmospheric and Oceanic Technology:;2003:;volume( 020 ):;issue: 012::page 1749
    Author:
    Loukachine, Konstantin
    ,
    Loeb, Norman G.
    DOI: 10.1175/1520-0426(2003)020<1749:AOAANN>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Clouds and the Earth's Radiant Energy System (CERES) provides top-of-atmosphere (TOA) radiative flux estimates from shortwave (SW) and longwave (LW) radiance measurements by applying empirical angular distribution models (ADMs) for scene types defined by coincident high-resolution imager-based cloud retrievals. In this study, CERES ADMs are simulated using a feed-forward error back-propagation (FFEB) artificial neural network (ANN) simulation to provide a means of estimating TOA SW and LW radiative fluxes for different scene types in the absence of imager radiance measurements. In all cases, the ANN-derived TOA fluxes deviate from CERES TOA fluxes by less than 0.3 W m?2, on average, and show a smaller dependence on viewing geometry than TOA fluxes derived using ADMs from the Earth Radiation Budget Experiment (ERBE). The ANN-derived TOA SW and LW fluxes show a significant improvement in accuracy over the CERES ERBE-like fluxes when compared regionally.
    • Download: (442.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of an Artificial Neural Network Simulation for Top-of-Atmosphere Radiative Flux Estimation from CERES

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158446
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLoukachine, Konstantin
    contributor authorLoeb, Norman G.
    date accessioned2017-06-09T14:34:39Z
    date available2017-06-09T14:34:39Z
    date copyright2003/12/01
    date issued2003
    identifier issn0739-0572
    identifier otherams-2204.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158446
    description abstractThe Clouds and the Earth's Radiant Energy System (CERES) provides top-of-atmosphere (TOA) radiative flux estimates from shortwave (SW) and longwave (LW) radiance measurements by applying empirical angular distribution models (ADMs) for scene types defined by coincident high-resolution imager-based cloud retrievals. In this study, CERES ADMs are simulated using a feed-forward error back-propagation (FFEB) artificial neural network (ANN) simulation to provide a means of estimating TOA SW and LW radiative fluxes for different scene types in the absence of imager radiance measurements. In all cases, the ANN-derived TOA fluxes deviate from CERES TOA fluxes by less than 0.3 W m?2, on average, and show a smaller dependence on viewing geometry than TOA fluxes derived using ADMs from the Earth Radiation Budget Experiment (ERBE). The ANN-derived TOA SW and LW fluxes show a significant improvement in accuracy over the CERES ERBE-like fluxes when compared regionally.
    publisherAmerican Meteorological Society
    titleApplication of an Artificial Neural Network Simulation for Top-of-Atmosphere Radiative Flux Estimation from CERES
    typeJournal Paper
    journal volume20
    journal issue12
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2003)020<1749:AOAANN>2.0.CO;2
    journal fristpage1749
    journal lastpage1757
    treeJournal of Atmospheric and Oceanic Technology:;2003:;volume( 020 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian