YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Gravity Waves in Slowly Varying in Time Mesoscale Motions

    Source: Journal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 009::page 1166
    Author:
    Browning, G. L.
    ,
    Kreiss, H-O.
    DOI: 10.1175/1520-0469(1997)054<1166:TROGWI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Pressure oscillations with amplitudes of the deviations from the horizontal mean and periods considerably less than those for the large-scale case have been observed in a number of summer and winter storms. However, there is conflicting evidence about the role of these waves in mesoscale storms. In the case of mesoscale heating that is a prescribed function of the independent variables, it has been proven that the dominant component of the corresponding slowly varying in time solution is accurately described by a simple dynamical (reduced) system in which gravity waves play no role. This paper proves that large spatial-scale gravity waves with amplitudes and periods of the pressure perturbations the same as the reduced system component of the solution can be generated by mesoscale storms. Because the amplitudes and the periods of the pressure perturbations for the two components of the solution are similar, it is difficult to distinguish between them using temporal plots of the pressure at a single location, and this is the source of a large part of the confusion about these waves. This problem, in conjunction with the fact that the vertical velocity of the gravity waves is an order of magnitude smaller than the maximum vertical velocity in the dominant component of the solution (and therefore in the noise range of current wind profilers), makes observation of gravity waves very difficult. In numerical simulations, if both components of the mesoscale solution are required, the lateral extent of the domain of solution must be considerably larger than the lateral extent of the mesoscale heating in order that the large-scale gravity waves be correct. In this case, it is shown that the multiscale system for meteorology developed earlier by Browning and Kreiss accurately describes both components of the solution.
    • Download: (311.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Gravity Waves in Slowly Varying in Time Mesoscale Motions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158373
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBrowning, G. L.
    contributor authorKreiss, H-O.
    date accessioned2017-06-09T14:34:28Z
    date available2017-06-09T14:34:28Z
    date copyright1997/05/01
    date issued1997
    identifier issn0022-4928
    identifier otherams-21975.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158373
    description abstractPressure oscillations with amplitudes of the deviations from the horizontal mean and periods considerably less than those for the large-scale case have been observed in a number of summer and winter storms. However, there is conflicting evidence about the role of these waves in mesoscale storms. In the case of mesoscale heating that is a prescribed function of the independent variables, it has been proven that the dominant component of the corresponding slowly varying in time solution is accurately described by a simple dynamical (reduced) system in which gravity waves play no role. This paper proves that large spatial-scale gravity waves with amplitudes and periods of the pressure perturbations the same as the reduced system component of the solution can be generated by mesoscale storms. Because the amplitudes and the periods of the pressure perturbations for the two components of the solution are similar, it is difficult to distinguish between them using temporal plots of the pressure at a single location, and this is the source of a large part of the confusion about these waves. This problem, in conjunction with the fact that the vertical velocity of the gravity waves is an order of magnitude smaller than the maximum vertical velocity in the dominant component of the solution (and therefore in the noise range of current wind profilers), makes observation of gravity waves very difficult. In numerical simulations, if both components of the mesoscale solution are required, the lateral extent of the domain of solution must be considerably larger than the lateral extent of the mesoscale heating in order that the large-scale gravity waves be correct. In this case, it is shown that the multiscale system for meteorology developed earlier by Browning and Kreiss accurately describes both components of the solution.
    publisherAmerican Meteorological Society
    titleThe Role of Gravity Waves in Slowly Varying in Time Mesoscale Motions
    typeJournal Paper
    journal volume54
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1997)054<1166:TROGWI>2.0.CO;2
    journal fristpage1166
    journal lastpage1184
    treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian