YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Relative Flow on the Asymmetric Structure in the Interior of Hurricanes

    Source: Journal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 006::page 703
    Author:
    Bender, Morris A.
    DOI: 10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Asymmetric structure of tropical cyclones simulated by the Geophysical Fluid Dynamics Laboratory high-resolution triply nested movable-mesh hurricane model was analyzed. Emphasis was placed on the quasi-steady component of the asymmetric structure in the region of the eyewall. It was found that the asymmetry was primarily caused by the relative wind, that is, the flow entering and leaving the storm region relative to the moving storm. A set of idealized numerical experiments was first performed both with a constant and a variable Coriolis parameter (?f?) and the addition of basic flows that were either constant or sheared with height. Analysis was then made for one case of Hurricane Gilbert (1988) to demonstrate that the quasi-steady asymmetric structure analyzed in the idealized studies could be identified in this real data case. Vorticity analysis in the variable f experiment indicated that quasi-steady asymmetries resulted in the eyewall region through the effect of vorticity advection due to differences between the beta gyre flow in the lower free atmosphere and the storm motion. This was roughly matched with a persistent area of divergence and vorticity compression in the lower free atmosphere ahead of the storm and enhanced convergence and vorticity stretching to the rear. An asymmetric structure in the upward motion and accumulated precipitation, when averaged over a sufficiently long period of time, exhibited a corresponding maximum in the eyewall?s rear quadrant. With the addition of an easterly basic flow, a pronounced change in the asymmetry of the time-averaged boundary layer convergence resulted, with maximum convergence located ahead of the storm. However, the asymmetries in the average vertical motion in the middle troposphere and accumulated precipitation were more affected by the convergence field in the lower free atmosphere produced by the relative flow there. The relative flow depended on both the basic and beta gyre flow. With the addition of an easterly vertical shear to the easterly basic flow, the storm moved faster than the lower-level winds, and strong relative wind was from the front to the rear in the lower free atmosphere and from the opposite direction in the outflow layer aloft. As a result, the upward motion was significantly increased in the front of the storm and reduced in the rear, and the precipitation maximum shifted to the left front quadrant. Overall, analysis results suggest that the flow relative to the storm motion is an important factor contributing to the formation of quasi-steady asymmetries in the convergence and vertical motion fields, as well as in the mean precipitation pattern of tropical cyclones.
    • Download: (679.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Relative Flow on the Asymmetric Structure in the Interior of Hurricanes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158341
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBender, Morris A.
    date accessioned2017-06-09T14:34:22Z
    date available2017-06-09T14:34:22Z
    date copyright1997/03/01
    date issued1997
    identifier issn0022-4928
    identifier otherams-21946.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158341
    description abstractAsymmetric structure of tropical cyclones simulated by the Geophysical Fluid Dynamics Laboratory high-resolution triply nested movable-mesh hurricane model was analyzed. Emphasis was placed on the quasi-steady component of the asymmetric structure in the region of the eyewall. It was found that the asymmetry was primarily caused by the relative wind, that is, the flow entering and leaving the storm region relative to the moving storm. A set of idealized numerical experiments was first performed both with a constant and a variable Coriolis parameter (?f?) and the addition of basic flows that were either constant or sheared with height. Analysis was then made for one case of Hurricane Gilbert (1988) to demonstrate that the quasi-steady asymmetric structure analyzed in the idealized studies could be identified in this real data case. Vorticity analysis in the variable f experiment indicated that quasi-steady asymmetries resulted in the eyewall region through the effect of vorticity advection due to differences between the beta gyre flow in the lower free atmosphere and the storm motion. This was roughly matched with a persistent area of divergence and vorticity compression in the lower free atmosphere ahead of the storm and enhanced convergence and vorticity stretching to the rear. An asymmetric structure in the upward motion and accumulated precipitation, when averaged over a sufficiently long period of time, exhibited a corresponding maximum in the eyewall?s rear quadrant. With the addition of an easterly basic flow, a pronounced change in the asymmetry of the time-averaged boundary layer convergence resulted, with maximum convergence located ahead of the storm. However, the asymmetries in the average vertical motion in the middle troposphere and accumulated precipitation were more affected by the convergence field in the lower free atmosphere produced by the relative flow there. The relative flow depended on both the basic and beta gyre flow. With the addition of an easterly vertical shear to the easterly basic flow, the storm moved faster than the lower-level winds, and strong relative wind was from the front to the rear in the lower free atmosphere and from the opposite direction in the outflow layer aloft. As a result, the upward motion was significantly increased in the front of the storm and reduced in the rear, and the precipitation maximum shifted to the left front quadrant. Overall, analysis results suggest that the flow relative to the storm motion is an important factor contributing to the formation of quasi-steady asymmetries in the convergence and vertical motion fields, as well as in the mean precipitation pattern of tropical cyclones.
    publisherAmerican Meteorological Society
    titleThe Effect of Relative Flow on the Asymmetric Structure in the Interior of Hurricanes
    typeJournal Paper
    journal volume54
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2
    journal fristpage703
    journal lastpage724
    treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian