YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Balanced and Unbalanced Circulations in a Primitive Equation Simulation of a Midlatitude MCC. Part I: The Numerical Simulation

    Source: Journal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 004::page 457
    Author:
    Olsson, Peter Q.
    ,
    Cotton, William R.
    DOI: 10.1175/1520-0469(1997)054<0457:BAUCIA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A midlatitude mesoscale convective complex (MCC), which occurred over the central United States on 23?24 June 1985, was simulated using the Regional Atmospheric Modeling System (RAMS). The multiply nested-grid simulation agreed reasonably well with surface, upper-air, and satellite observations and ground-based radar plots. The simulated MCC had a typical structure consisting of a leading line of vigorous convection and a trailing region of less intense stratiform rainfall. Several other characteristic MCC circulations were also simulated: a divergent cold pool in the lower troposphere, midlevel convergence coupled with a relatively cool descending rear-inflow jet, and relatively warm updraft structure, and a cold divergent anticyclone in the tropopause region. Early in the MCC simulation, a mesoscale convectively induced vortex (MCV) formed on the eastern edge of the convective line. While frequently associated with MCCs and other mesoscale convective systems (MCSs), MCVs are more typically reported in the mature and decaying stages of the life cycle. Several hours later, a second MCV formed near the opposite end of the convective line, and by the mature phase of the MCC, these MCVs were embedded within a more complex system-wide vortical flow in the lower troposphere. Analysis of the first MCV during its incipient phase indicates that the vortex initially formed near the surface by convergence/stretching of the large low-level ambient vertical vorticity in this region. Vertical advection appeared largely responsible for the upward extension of this MCV to about 3.5 km above the surface, with tilting of horizontal vorticity playing a secondary role. This mechanism of MCV formation is in contrast to recent idealized high-resolution squall line simulations, where MCVs were found to result from the tilting into the vertical of storm-induced horizontal vorticity formed near the top of the cold pool. Another interesting aspect of the simulation was the development of a banded vorticity structure at midtropospheric levels. These bands were found to be due to the apparent vertical transport of zonal momentum by the descending rear-to-front circulation, or rear-inflow jet. An equivalent alternative viewpoint of this process, deformation of horizontal vorticity filaments by the convective updrafts and rear-inflow jet, is discussed. Part II of this work presents a complementary approach to the analysis presented here, demonstrating that the circulations seen in this MCC simulation are, to a large degree, contained within the nonlinear balance approximation, the related balanced omega equation, and the PV as analyzed from the PE model results.
    • Download: (831.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Balanced and Unbalanced Circulations in a Primitive Equation Simulation of a Midlatitude MCC. Part I: The Numerical Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158324
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorOlsson, Peter Q.
    contributor authorCotton, William R.
    date accessioned2017-06-09T14:34:20Z
    date available2017-06-09T14:34:20Z
    date copyright1997/02/01
    date issued1997
    identifier issn0022-4928
    identifier otherams-21930.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158324
    description abstractA midlatitude mesoscale convective complex (MCC), which occurred over the central United States on 23?24 June 1985, was simulated using the Regional Atmospheric Modeling System (RAMS). The multiply nested-grid simulation agreed reasonably well with surface, upper-air, and satellite observations and ground-based radar plots. The simulated MCC had a typical structure consisting of a leading line of vigorous convection and a trailing region of less intense stratiform rainfall. Several other characteristic MCC circulations were also simulated: a divergent cold pool in the lower troposphere, midlevel convergence coupled with a relatively cool descending rear-inflow jet, and relatively warm updraft structure, and a cold divergent anticyclone in the tropopause region. Early in the MCC simulation, a mesoscale convectively induced vortex (MCV) formed on the eastern edge of the convective line. While frequently associated with MCCs and other mesoscale convective systems (MCSs), MCVs are more typically reported in the mature and decaying stages of the life cycle. Several hours later, a second MCV formed near the opposite end of the convective line, and by the mature phase of the MCC, these MCVs were embedded within a more complex system-wide vortical flow in the lower troposphere. Analysis of the first MCV during its incipient phase indicates that the vortex initially formed near the surface by convergence/stretching of the large low-level ambient vertical vorticity in this region. Vertical advection appeared largely responsible for the upward extension of this MCV to about 3.5 km above the surface, with tilting of horizontal vorticity playing a secondary role. This mechanism of MCV formation is in contrast to recent idealized high-resolution squall line simulations, where MCVs were found to result from the tilting into the vertical of storm-induced horizontal vorticity formed near the top of the cold pool. Another interesting aspect of the simulation was the development of a banded vorticity structure at midtropospheric levels. These bands were found to be due to the apparent vertical transport of zonal momentum by the descending rear-to-front circulation, or rear-inflow jet. An equivalent alternative viewpoint of this process, deformation of horizontal vorticity filaments by the convective updrafts and rear-inflow jet, is discussed. Part II of this work presents a complementary approach to the analysis presented here, demonstrating that the circulations seen in this MCC simulation are, to a large degree, contained within the nonlinear balance approximation, the related balanced omega equation, and the PV as analyzed from the PE model results.
    publisherAmerican Meteorological Society
    titleBalanced and Unbalanced Circulations in a Primitive Equation Simulation of a Midlatitude MCC. Part I: The Numerical Simulation
    typeJournal Paper
    journal volume54
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1997)054<0457:BAUCIA>2.0.CO;2
    journal fristpage457
    journal lastpage478
    treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian