YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulations and a Conceptual Model of the Stratocumulus to Trade Cumulus Transition

    Source: Journal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 001::page 168
    Author:
    Wyant, Matthew C.
    ,
    Bretherton, Christopher S.
    ,
    Rand, Hugh A.
    ,
    Stevens, David E.
    DOI: 10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A two-dimensional eddy-resolving model is used to study the transition from the stratocumulus topped boundary layer to the trade cumulus boundary layer. The 10-day simulations use an idealized Lagrangian trajectory representative of summertime climatological conditions in the subtropical northeastern Pacific. The sea surface temperature is increased steadily at 1.5 K day?1, reflecting the southwestward advection of the subtropical marine boundary layer by the trade winds, while the free tropospheric temperature remains unchanged. Results from simulations with both a fixed diurnally averaged shortwave radiative forcing and a diurnally varying shortwave forcing are presented. A two-stage model for the boundary layer evolution consistent with these simulations is proposed. In the first stage, decoupling is induced by increased latent heat fluxes in the deepening boundary layer. After decoupling, cloud cover remains high, but the cloudiness regime changes from a single stratocumulus layer to sporadic cumulus that detrain into stratocumulus clouds. In the second stage, farther SST increase causes the cumuli to become deeper and more vigorous, penetrating farther into the inversion and entraining more and more dry above-inversion air. This evaporates liquid water in cumulus updrafts before they detrain, causing the eventual dissipation of the overlying stratocumulus. Diurnal variations of insolation lead to a large daytime reduction in stratocumulus cloud amount, but they have little impact on the systematic evolution of boundary layer structure and cloud. The simulated cloudiness changes are not consistent with existing criteria for cloud-top entrainment instability.
    • Download: (777.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulations and a Conceptual Model of the Stratocumulus to Trade Cumulus Transition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158306
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorWyant, Matthew C.
    contributor authorBretherton, Christopher S.
    contributor authorRand, Hugh A.
    contributor authorStevens, David E.
    date accessioned2017-06-09T14:34:17Z
    date available2017-06-09T14:34:17Z
    date copyright1997/01/01
    date issued1997
    identifier issn0022-4928
    identifier otherams-21914.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158306
    description abstractA two-dimensional eddy-resolving model is used to study the transition from the stratocumulus topped boundary layer to the trade cumulus boundary layer. The 10-day simulations use an idealized Lagrangian trajectory representative of summertime climatological conditions in the subtropical northeastern Pacific. The sea surface temperature is increased steadily at 1.5 K day?1, reflecting the southwestward advection of the subtropical marine boundary layer by the trade winds, while the free tropospheric temperature remains unchanged. Results from simulations with both a fixed diurnally averaged shortwave radiative forcing and a diurnally varying shortwave forcing are presented. A two-stage model for the boundary layer evolution consistent with these simulations is proposed. In the first stage, decoupling is induced by increased latent heat fluxes in the deepening boundary layer. After decoupling, cloud cover remains high, but the cloudiness regime changes from a single stratocumulus layer to sporadic cumulus that detrain into stratocumulus clouds. In the second stage, farther SST increase causes the cumuli to become deeper and more vigorous, penetrating farther into the inversion and entraining more and more dry above-inversion air. This evaporates liquid water in cumulus updrafts before they detrain, causing the eventual dissipation of the overlying stratocumulus. Diurnal variations of insolation lead to a large daytime reduction in stratocumulus cloud amount, but they have little impact on the systematic evolution of boundary layer structure and cloud. The simulated cloudiness changes are not consistent with existing criteria for cloud-top entrainment instability.
    publisherAmerican Meteorological Society
    titleNumerical Simulations and a Conceptual Model of the Stratocumulus to Trade Cumulus Transition
    typeJournal Paper
    journal volume54
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2
    journal fristpage168
    journal lastpage192
    treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian