YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Free Barotropic Rossby Wave Dynamics of the Wintertime Low-Frequency Flow

    Source: Journal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 001::page 5
    Author:
    Sardeshmukh, Prashant D.
    ,
    Newman, Matthew
    ,
    Borges, Mark D.
    DOI: 10.1175/1520-0469(1997)054<0005:FBRWDO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In recent years much attention has been given to Rossby wave propagation and dispersion on representative zonally and meridionally varying background flows in the atmosphere. Particular emphasis has been placed on the 300-mb flow as shaping the structure and evolution of extratropical low-frequency eddies. In this paper an attempt is made to check this hypothesis against the observed evolution of low-pass filtered 300-mb streamfunction anomalies during the eight northern winters of 1985?93. The filter passes periods greater than 10 days. The focus is on explaining the observed evolution of these low-pass anomalies over ?10 days. This evolution is expected to be nonmodal, that is, a mix of several evolving normal modes rather than a single mode. Two questions are asked: 1) given an initial anomaly, to what extent can one explain the observed subsequent evolution with an unforced barotropic vorticity equation linearized about the climatological 300-mb flow, and 2) in instances of anomaly growth, to what extent is the growth optimally nonmodal, that is, associated with the maximum possible constructive interference of the normal modes. Concerning question 1, it is found that regardless of the linear drag specified in the model, it cannot reproduce the 10-day lag-covariance structure of the observations. If the model is interpreted as an equivalent barotropic model applied at the 300-mb level, a 5-day drag is appropriate; however, the modeled anomalies lose significant amplitude by day 10 in this case. Question 2 is addressed in two ways. First, a theoretical analysis is performed to determine the optimal as well as expected nonmodal growth of global perturbation kinetic energy in the model. The optimal growth can be as large as a factor of 8 over 3.5 days, even in the presence of the 5-day drag, if certain optimal perturbations (singular vectors) occur as the initial condition. The expected growth, given the statistical structure of the observed ?initial? conditions, is however actually a decay. Second, 21 cases of global anomaly growth sustained over at least 7 days are isolated in the data record. The model is run for 7 days with the observed initial condition in each case. In each case, it predicts a decay instead of growth, more consistent with the expected growth (i.e., decay) than optimal growth. The same result is obtained with nonlinear integrations. Somewhat better results are obtained by considering ?instantaneous? background flows in the 21 cases; however, the model still predicts a decay. An interesting ambiguity in the interpretation of these latter runs is highlighted. These results imply that an unforced barotropic vorticity equation linearized about a representative 300-mb flow cannot explain the observed evolution of low-frequency anomalies except possibly in isolated cases. In particular they imply that extratropical low-frequency variability cannot be viewed solely as free Rossby wave propagation and dispersion on a zonally and meridionally varying 300-mb flow, with the forcing acting mainly as a provider of initial perturbations in certain sensitive regions of the atmosphere. Rather the forcing, which in a barotropic model represents the combined effects of diabatic heating, interactions with orography, synoptic-eddy feedbacks, and baroclinic dynamics, is important throughout the development of low-frequency anomalies.
    • Download: (900.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Free Barotropic Rossby Wave Dynamics of the Wintertime Low-Frequency Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4158295
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSardeshmukh, Prashant D.
    contributor authorNewman, Matthew
    contributor authorBorges, Mark D.
    date accessioned2017-06-09T14:34:16Z
    date available2017-06-09T14:34:16Z
    date copyright1997/01/01
    date issued1997
    identifier issn0022-4928
    identifier otherams-21904.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4158295
    description abstractIn recent years much attention has been given to Rossby wave propagation and dispersion on representative zonally and meridionally varying background flows in the atmosphere. Particular emphasis has been placed on the 300-mb flow as shaping the structure and evolution of extratropical low-frequency eddies. In this paper an attempt is made to check this hypothesis against the observed evolution of low-pass filtered 300-mb streamfunction anomalies during the eight northern winters of 1985?93. The filter passes periods greater than 10 days. The focus is on explaining the observed evolution of these low-pass anomalies over ?10 days. This evolution is expected to be nonmodal, that is, a mix of several evolving normal modes rather than a single mode. Two questions are asked: 1) given an initial anomaly, to what extent can one explain the observed subsequent evolution with an unforced barotropic vorticity equation linearized about the climatological 300-mb flow, and 2) in instances of anomaly growth, to what extent is the growth optimally nonmodal, that is, associated with the maximum possible constructive interference of the normal modes. Concerning question 1, it is found that regardless of the linear drag specified in the model, it cannot reproduce the 10-day lag-covariance structure of the observations. If the model is interpreted as an equivalent barotropic model applied at the 300-mb level, a 5-day drag is appropriate; however, the modeled anomalies lose significant amplitude by day 10 in this case. Question 2 is addressed in two ways. First, a theoretical analysis is performed to determine the optimal as well as expected nonmodal growth of global perturbation kinetic energy in the model. The optimal growth can be as large as a factor of 8 over 3.5 days, even in the presence of the 5-day drag, if certain optimal perturbations (singular vectors) occur as the initial condition. The expected growth, given the statistical structure of the observed ?initial? conditions, is however actually a decay. Second, 21 cases of global anomaly growth sustained over at least 7 days are isolated in the data record. The model is run for 7 days with the observed initial condition in each case. In each case, it predicts a decay instead of growth, more consistent with the expected growth (i.e., decay) than optimal growth. The same result is obtained with nonlinear integrations. Somewhat better results are obtained by considering ?instantaneous? background flows in the 21 cases; however, the model still predicts a decay. An interesting ambiguity in the interpretation of these latter runs is highlighted. These results imply that an unforced barotropic vorticity equation linearized about a representative 300-mb flow cannot explain the observed evolution of low-frequency anomalies except possibly in isolated cases. In particular they imply that extratropical low-frequency variability cannot be viewed solely as free Rossby wave propagation and dispersion on a zonally and meridionally varying 300-mb flow, with the forcing acting mainly as a provider of initial perturbations in certain sensitive regions of the atmosphere. Rather the forcing, which in a barotropic model represents the combined effects of diabatic heating, interactions with orography, synoptic-eddy feedbacks, and baroclinic dynamics, is important throughout the development of low-frequency anomalies.
    publisherAmerican Meteorological Society
    titleFree Barotropic Rossby Wave Dynamics of the Wintertime Low-Frequency Flow
    typeJournal Paper
    journal volume54
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1997)054<0005:FBRWDO>2.0.CO;2
    journal fristpage5
    journal lastpage23
    treeJournal of the Atmospheric Sciences:;1997:;Volume( 054 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian